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Abstract

We use a quasi-likelihood function approach to clarify the role of initial values and
the relative size of the cross-section dimension N and the time series dimension 7" in the
asymptotic distribution of dynamic panel data models with the presence of individual-
specific effects. We show that the quasi-maximum likelihood estimator (QMLE) treating

initial values as fixed constants is asymptotically biased of order % as T goes to infinity for

a time series models and asymptotically biased of order 4/ % for a model that also contains
other covariates that are correlated with the individual-specific effects. Using Mundlak-

Chamberlain approach to condition the effects on the covariates can reduce the asymptotic
755
homogeneous across cross-sectional units. On the other hand, the QMLE combining the

bias to the order of provided the data generating processes for the covariates are
Mundlak-Chamberlain approach with the proper treatment of initial value distribution is
asymptotically unbiased if IV goes to infinity whether T is fixed or goes to infinity. Monte
Carlo studies are conducted to demonstrate the importance of properly treating initial
values in getting valid statistical inference. The results also suggest that when using the
conditional approach to get around the issue of incidental parameters, in finite sample it

is perhaps better to follow Mundlak’s (1978) suggestion to simply condition the individual
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effects or initial values on the time series average of individual’s observed regressors under
the assumption that our model is correctly specified.

Keywords: Dynamic panel models, Individual effects, Initial values, Projection method,
Conditional or unconditional likelihood approach.

JEL classification: C01, C13, C23



1 Introduction

In the estimation of dynamic panel data models with the presence of time-invariant individual
effects, three issues have arisen (e.g., Hsiao (2014)): (i) whether the unobserved individual-
specific effects should be treated as fixed or random? (2) whether the initial values should be
treated as fixed constants or random? (iii) does the relative size of cross-sectional dimension
N and time series dimension 1" matter? We argue in this paper that all three issues matter in
obtaining consistent estimation of unknown parameters and obtaining valid statistical inference.
We illustrate our points using a quasi-likelihood function approach because it allows us to
synthesize all these issues, also because many panel estimators such as the within estimator
(e.g., Hsiao (2014)), the Bai (2013) factor estimator or the Phillips (2010, 2015) control function
estimator can also be put in this framework.

Because the impact of the presence of time-invariant individual specific effects on the limiting
distribution differ between a panel time series model and a model involving other explanatory
variables, we consider these issues first in a panel time series setting, then for a general dynamic
panel model containing exogenous explanatory variables in section 2 and 3, respectively. Section
4 discusses the implication of Chamberlain (1980)-Mundlak (1978) approach to get around the
issue of incidental parameters. Section 5 considers the case of heteroscedatic errors. Section 6
provides a small scale Monte Carlo study to highlight the issues involved. Concluding remarks
are in Section 7. All proofs are in the Appendix.

Throughout this paper, we use (N,T) — oo to denote that both N and T jointly go to

n

infinity, "—," and "—;" to denote convergence in probability and in distribution, respectively.

2 A Panel Time Series Model

In this section, we discuss the asymptotic properties of the QMLE of a simple panel time
series model. We distinguish two cases: inference based on fixed initial and random initial

observations.

2.1 The model
There is no loss of generality to consider the following simple model,
Yit = PYit—1 +1; +ug,i=1,... ., N;t=1,...,T, (2.1)

where |p| < 1 and the initial value y;o is also available for i =1,..., N. We assume



Assumption Al(a): The errors u;; are independent of 7; and are independently and iden-
tically distributed (i.i.d.) over i and ¢ with mean zero and constant variance o2. For ease of
notation, we let o2 = 1.

Assumption A2: The individual-specific effects 7, is i.i.d. over ¢ with mean zero and variance
2
b

Let yi = (yit, - %) s Yi—1 = Wios - ¥ir-1)', Wi = (uit, ..., ur) and 1p be a T x 1
vector of ones, model (2.1) can be rewritten as a T-equation system of the form,

(2

Vi=Yi-1p+1lm;+w, i=1,...,N. (2.2)

2.2 Fixed Initial Observation

Under the assumption y;g are fixed constants, the quasi-likelihood function takes the form

N
_T _1 1 _
L = H (2m)" 2 [V] zexp {—2 (vi — pyi—1) V' (yi — PYi,—1)} ) (2.3)
i=1
where
21 41 1 ‘7727 '

The quasi-maximum likelihood estimator (QMLE) is obtained by maximizing the logarithm of
(2.3). When o2 and 0727 are known, the QMLE is the (naive) generalized least squares (GLS)

estimator,

N -1 /N
ZJQMLE,f = (Z y;,1VIYi,—1> <Z yg,1V1Yi> . (2.5)
i=1

=1

where e, refers to QMLE treating y;0 as fixed constants.

Remark 2.1 Bai (2013) derives (2.5) from the factor analytic framework by minimizing'->

log | (8)] + tr (zN 6)~ SN) , (2.6)

'Bai (2013) derived (2.5) under the assumption that y;0 = 0. However, one may view y;0 = 0 as a special case

of yio being a constant.

*Bai (2013) actually considers a model involving both the individual- and time- specific effects. However,
taking the deviation of individual observation from the cross-section mean at time ¢, (yit — §¢), removes the
time-specific effects, where g, = % 25\7:1 yit. The transformed model no longer involves time-specific effects. The
asymptotic distributions for Bai (2013) model or (2.1) are identical. So for ease of exposition, we just consider

(2.1).



where @ = (p, 0727, a%)l, YN (0)=T (U%IT + <U727 + p% Zf\il yi20> 1T1’T> I and Sy = % Zf\;l (yvi— %) (yi —¥)
with § :% Zf\il Vi, 3

1 0 0
P
Prxr = p? p 1
: : 0
P I |

The difference between (2.6) and (2.3) is in the way of how the likelihood function f(y;) is
written. There is not any fundamental difference between the QMLE and factor estimator. To

see this, note that by continuous substitution,

t—1
1—pt ,
yit = p'yio + 1—p n; + Z P Ui (2.7)
7=0
Thus,
yi = Fely’iop + F]-TT]Z + Fuia L= 17 27 R N7 (28)
where ey = (1,0,. .. ,0) is a T x 1 vector. Under the assumption that n; and u are i.9.d over ¢,

and plimNHoo% Zfil yizo converges to a constant, the logarithm of the quasi-likelihood function

divided by N takes the form (2.6).
We note that premultiplying (2.8) by the T x T matriz A

1 0
—p
A=] 0 —p 1 : (2.9)
0
0 0 - —p 1

yields (2.2) and the quasi-likelihood function (2.3). In other words, the QMLE and factor
estimator are different ways of obtaining the QMLE, not two different estimators based on
different assumptions or inference procedures. So for ease of reference, we shall call the QMLE

treating initial value fized either the naive GLS or the Bai (2013) factor estimator.

Under the assumption that y;0 = 0 for all 4, Bai (2013, Supplement) shows that the factor
estimator (2.5) is fixed-T consistent. However, if y;0 # 0 and plimN_,oo% Efi 1 Yion; # 0,

3For simplicity of exposition, we do not include an intercept term in (2.1). Thus, under our framework, Sy
should be just + Zil YViyi.



Lemma 2.1 Under assumptions A1(a) and A2, the Bai (2013) factor estimator (or naive GLS)

(2.5) for model (2.1) is inconsistent when T is fivzed and N — oo. It is consistent when T — oo.
4+-€ 4+-€

Furthermore, if uy and n; are normally distributed or E |uy|” " < oo and E |n;|""¢ < oo for
some € > 0, when (N,T) — oo,
R 1
VNT (PQMLE,f —pP— T2d> —a N (07 I PQ) ) (2.10)
where d = mplim]v_m% Zf\il yion;- If the process has been going on for a long time, then
_ 1
d= (1-p)*"

Remark 2.2 Lemma 2.1 says if% —a <00 as (N, T) — oo, the QMLE or naive GLS treating
initial observations as fized constants is asymptotically unbiased. However, if % —c#0 as
T — oo, the naive GLS is asymptotically biased and the bias is of order % Monte Carlo
studies conducted by Hsiao and Zhang (2015) and Hsiao and Zhou (2015) show that valid

statistical inference depends critically on the use of asymptotically unbiased estimators.

Remark 2.3 Treating n; and yio as fized constants, the QMLE is the within estimator. The
within estimator is inconsistent if T' is finite. It is consistent when T" — oco. However, Hahn and
Kuersteiner (2002) show that when (N,T) — oo and 5 — a # 0 < oo, the within estimator is

asymptotically biased and bias is of order \/a.

Remark 2.4 The reason that the factor estimator (2.5) is asymptotically unbiased when % —
a # 0 < oo while the within estimator remains biased of order \/a is because the former treats
n; as random that allows the cancellation of correlations due to % 25\;1 ygv_lv—lu,- with part
of the correlations due to % Zfil yg,flVflle (e.g., Appendiz, equations (A.3) and (A.4)),
while the within transformation removes n; from the transformed equation and there is no term

to cancel the bias due to + PR yi i lrlpu.

2.3 Random Initial Observations

The starting date of collecting data is arbitrary. There is no reason to assume the data generat-
ing process of y;o to be different from that of y;;. Under the assumption that the data generating

process of y;0 is the same as that of v,

1 =
Yio = Yi,—1p + 1; + Uio = ﬂm + Z(:)pjui,j-
i=

Then E (yiovit) # 0 for all v;y = m;+ui, t = 1,...,T. Rewrite y;o in the form



Yio = K+ vio, (2.11)
where vy = 1%/)771- + >0 pPu; —;. Under assumptions Al(a) and A2, we have F (vio) = 0 and
E (%) = o and E (viovir) = 03 (= 11502

Combining (2.11) and (2.2) yields a system of (7" + 1) equations
Yio = K+ vio,
yi = pyi—1+nlr+u, i=1,...,N, (2.12)

with variance-covariance matrix

o 2 21/
v=( 70 7T ) (2.13)
oy V
where V is defined in (2.4).
The quasi-log-likelihood function of the system (y;o,y;) takes the form
N 1 '
logL = ——log|V|— = Z yio— 1 V! yio— 1 . (2.14)
2 2 i=1 \ Yi — PYi-1 Yi — pPYi—1

Conditional on V, the QMLE is the GLS of p

N -1/ N N
PQMLE: = (Z y;,_1C_1yz',—1> (Z Vi 1C lyi = > (yio — ) 0020%1%0_1}’@—1) ;
im1 i=1

=1

(2.15)
where gare,r refers to QMLE treating y;0 as a random variable, C = I + 5%1T1,T with
6727 = 0727 — (7‘11062.

Lemma 2.2 Under assumptions Al(a) and A2, and if yo is treated as a random wvariable,
when N — oo, the QMLE estimator (2.15) for model (2.1) is consistent either T is fixed or
T — oo and

VNT (pgarzy — p) —a N (0,1 %) (2.16)

Remark 2.5 In the supplement material of Bai (2013), Bai assumes yio = 6o + ¢n; + wio,
which is similar to (2.11). Rewrite the system (2.12) in the form,

()= (o )o Conaom ) L ) (0) o
Vi pley pleip + Ty ple; T u;



Premultiplying (2.17) by the (T + 1) x (T + 1) matrix

/~\ _ 1 01><T :
Orx1 A

yields the system (2.12) and the quasi-likelihood function similar in the form to that of (2.14),
where A is given by (2.9). In other words, the GLS of (2.12) is identical to the Bai (2013)

factor estimator when y;o are treated as random variables.

3 Panel Dynamic Models with Exogenous Explanatory Vari-

ables

We consider a dynamic model of the form
Yit = PYit—1 +x1t/8+771 +uitai = 1)' 7N7t - 17 7T7 (31)
where y;p is observable, x; is stationary and is strictly exogenous with respect to u;, and

plim N,T)—»ooﬁ Zfil Z?:l x?t is a nonzero constant, or nonsingular constant matrix if x;; is

multidimension.

3.1 Fixed Initial Conditions

Let x; = (z41,...,27) and Z; = (¥i—1,%;). Treating y;o as fixed constants, the analogous

estimator of (2.5) now becomes

. N -1 /N
( fnGLs ) = (Z z;v—lzz»> (Z z;v—ly,) , (3.2)
=1 =1

BnaLs
where V is defined in (2.4).

Lemma 3.1 Under assumption Al(a), A2 and E (xyn;) = 0, the naive GLS (3.2) for p and 3
is inconsistent if T is fixred and N — oco. When (N,T) — oo, the naive GLS is consistent and
1s asymptotically unbiased if % — a < 0o0. However, it is asymptotically biased of order 1/% if

%—>07é0<oo.

It is often argued that the individual-specific effects n; could be correlated with z;;, namely,
E (zin;) # 0. Then
Lemma 3.2 Under assumption Al(a), A2, and the assumption that plimy_.co+ Zf\il zin; =
¢ # 0 where T; = % Ethl Zit, the naive GLS, (3.2), for p and B is inconsistent if T is fized and
N — oo. When T' — oo, it is consistent. However, when (N,T) — oo and % —a# 0 < oo,

. . . . N
the naive GLS is asymptotically biased of order 1/ 7.



3.2 Random Initial Observations

If the data generating process of y;o is no different from that of y;; for ¢ > 1. By continuous
substitution of (3.1), it can be shown that y;o is not only a function of 7;, but also past z; _;
and Uj,—j (.] Z O) ’

1 o o
yio = T + Z plri—j+ Z Pl i
P =0 =0

1 N
= b+ =, + Zﬂiui,ﬁ'? (3.3)
=0

where 0,0 = 8 Z;io p’x; _; that varies with i. Bhargava and Sargan (1983) propose to eliminate
the incidental parameters, 0,9, through

Qi():E(ei()’Xi)—i-wi:i;-b—i-wi, i:1,...,N, (3.4)
where %; = (1,x})".

Remark 3.1 For b to be constant across i, the data generating process of x; is stationary
and homogeneous across i (Hsiao and Zhou (2015)), otherwise, E (0;0|x;) = X/b,. Issues of

incidental parameters will arise.
Substituting (3.4) into (3.3), we have
Yio = X;b + vio, (3.5)

where v;g is now w; + l%pm +2°720 p’u;i _;. Combining (3.5) with the vector form of (3.1) yields
a system of (T + 1) equations

; X 0 b v;
N ), (3.6)
Vi 0 Z; 0 v;
where v; = 171, + u;. The error term v, = (vio,f/;)' is 1.i.d over ¢ with variance-covariance

v (3.7)
B o2l 'V ’ .

where 02 = Var (vio), 02 = Cov (vip,vit) , and V is defined in (2.4).
Conditional on V, the QMLE of the system (3.6) is the GLS,

~ —1
bgrs o 15 .
=Y zZNV'Z| Y ZV''y, (3.8)
=1 i=1

0aLs

matrix of the form

9



-~ <\ 0
where ¥; = (50, y;-)’ and Z; = i )
0 Z;

Lemma 3.3 When N — oo, under the assumption Al(a) and A2, the GLS estimator (3.8):
(i) is consistent and asymptotically unbiased whether T is fized or goes to infinity if E (zyn;) =
0 (following the convention we shall call model (3.1) under E (zyn;) = 0 the random effects
model);
(1) is inconsistent if T is fized when E (xi4n;) # 0 (we shall call model (3.1) under E (xin;) #
0 the fized effects model). If T — oo and % — a # 0 < oo, it is consistent, however, it is as-

ymptotically biased of order \/a.

4 Chamberlain-Mundlak Approach

When 7, are correlated with z;;, treating n, as fixed constants introduces an incidental parameter
issue. Mundlak (1978) has suggested to use the conditional mean of 7, conditional on the
tth individual’s time series average of observed explanatory variables, &; = %Zthl Ti, and
Chamberlain (1980) has suggested to use the conditional mean of n; conditional on the observed
explanatory variables x; = (21, . .. ,xiT)/ in place of n; to get around the issue of incidental
parameters. This approach has been very popular in both theoretical and empirical analysis
(e.g., Abowd et al (1999), Bai (2013), and Islam (1995)). We consider the asymptotic properties
of the QMLE under this formulation.

Let %; = (1,%;) if one follows the Mundlak (1978) formulation or X; = (1, %1, ..., zi7) =
(1,x})" if one follows the Chamberlain (1980) approach. Then*

n o= Emlx)+w]
X/b* + w}, (4.1)

where b* = (1, b)) if %; = (1,2;) or b* = (u, b%, ..., b%) if % = (1,x})'.

Remark 4.1 For (4.1) to hold, the data generating process for x; is stationary and homo-
geneous across i (Hsiao et al (2002)). If x; are generated from heterogenous process, then
E (n;|%;) = X[b¥, issues of incidental parameters will still arise even with the Chamberlain

11

(1980) or Mundlak (1978) approach.

4Note that if the data generating process is nonlinear, then (4.1) should be treated as a linear projection. The
asymptotic properties of the estimator to be discussed remain holding as long as b* is constant across ¢ and w;

is uncorrelated with x;.

10



Substituting (4.1) back to (3.1) yields
Yit = pYit—1 + T+ Xb* +wf +uy, i=1,...,N;t=1,...,T, (4.2)
which can be rewritten in vector form as
Yi = Yi-1p+xi8+ 1pXb" + wily + u
= Z;6+ 1rxb* +wily +u;
= [2:i,19%]] 0 + wilr +u, (4.3)

where ZZ = (yz',flaxi) ) 0= (paﬁ)l and 6 = (pvﬁa b*/)/ .
Under the assumption that w; is independent of x; and i.i.d over ¢ with mean 0 and variance

02 ., the variance-covariance matrix of (w} 1y + ;) takes the form,

V = E[(wflr+w) (wlr +w)]
= oIy + o2, 1p1k. (4.4)
then

2 —2
vlzgz<l L TwTu y).
A\ T 1T 02 T

4.1 Fixed Initial Observations

Treating initial values y;o as fixed constants, the naive generalized least squares estimator of
(4.3) takes the form

. N 7! _ T v/ _

Onors =D | " |V (Zi10%) ST )V (4.5)
o1\ Xilp i\ Xilp

For this naive GLS énGLS, including the SnGLS = (bnGLS,BnGLS) , we have

Lemma 4.1 Under assumption Al(a), A2 and (4.1), the naive GLS (4.5) is inconsistent if
T is fited and N — oo. When (N,T) — oo and % — a # 0 < oo, it is consistent and
asymptotically normally distributed with mean zero. However, if N tends to infinity faster than
T so % — c#0< 00, (4.5) is asymptotically biased of order /c.

4.2 Random Initial Observations

Combining (3.5) for the initial distribution y;o and the vector form of (4.2), we have a system of

(T + 1) equations. The (T + 1)x(T" + 1) covariance matrix of this system takes the form

2 21/
o=( 0 7T ). (4.6)
oily UuIT+0w*1T1T

11



Conditional on o3, 02 and o2., the QMLE of the complete system (yio,y:|x;) takes the

form of
~ N “lrnN
Ocrs = [Z ARV [Z Z7'Q 7y . (4.7)
i=1 i=1
where 6 = (b’,b*’,é'),,
X 0 0
z; = : (4.8)
0 1TXi Zl

The QMLE (4.7) is asymptotically unbiased when N — oo whether T is fixed or goes to infinity.

Conditional on y;o and x;, the system of (y;|yi0,%;), ¢ =1,..., N, is of the form

Yi =Yi—-1p + X’L’B + 1Ti;f)* + 1Tyi0’7 + V;'ka 1= 1a cee 7Na (49)

£

where b* = vb 4+ b* and v = —

The covariance matrix of (4.9) is

S oqm

E (vivy) = ollr + o2 171 = V*, (4.10)

).

RS

where for notational ease, we now use o2, to indicate <a2 -2

The GLS of (4.9) now takes the form

(=1

A -1

f(*f N Z; N z;
be | =D | &% | V(2% lowo) | D | ®ly [ VTlyi| o (411)
A =\ vl =\ violl

The GLS of 8, 8¢, for (4.11) has essentially the same form as (4.5). Thus,

Lemma 4.2 Under assumption Al(a), A2, (4.1) and (3.5), both the unconditional GLS (4.7)
and the conditional GLS (4.11) are consistent and asymptotically unbiased when N — oo

whether T is fized or goes to infinity.

Remark 4.2 The difference between 30 and SnGLS 1s that 30 is based on the conditional distri-
bution of (yi|yio, xi) while 8ncrs is derived from the distribution of (yi|x;) assuming E (yion;) =
0. If E (yion;) # 0, there is a bias term due to this. On the other hand, d¢ is also conditional on
Yi0, SO plimN_,oo% Zfil yiov; = 0, while for the system (4.3) plz'mN_m% Zfil yio (W + uit) #
0. In other words, the conditional GLS estimator is asymptotically unbiased when N — oo in-

dependent of the size of T.

12



Remark 4.3 The system (4.9) is identical to the system of Phillip (2010, 2015) based on
the control function approach. However, the derivation of the conditional system (4.9) shows
that for the control function approach to avoid incidental parameters issue, the data generating

process of x; has to be homogeneous across i.

Remark 4.4 In some applications, one takes the approach of conditioning on y;o to take count
the endogeneity of yio. This is fine if the model is a time series model like (2.1). However, if
the dynamic model also contains exogenous regressors like (3.1), conditioning on y;o alone, but
not also on X; (eq (3.5)), cannot remove the asymptotic bias, even under the assumption that
x; are independent of n;. As a matter of fact, if T is fized, the resulting estimator is biased of
order % no matter how large N is. If % —a#0< 00 asT — oo, the estimator is consistent,
but is asymptotically biased of order ﬁ

For ease of notation, we assume x;; and n; are independent. We note that from (3.3),

1
Yio = ﬂm + Vio; (4.12)

where viy = p+ B3 72, Pri i+ > 20 PPui—j = 0i0 + vig. Combining (3.1) and (4.12) yields
0 0 L v}
Vi—1 X; 1r u;

a system,
Yio
Yi
0 1 y
- s+ =T ) o N (4.13)
Z; Lrm; +

Thus, the conditional system of y; conditional on y;9 takes the form,

yi:Zi(s—l—lTyio’y—l—{/;k, izl,...,N, (414)

2
where v} = ul-—l—{ <1 — _0)22) n; — (1:;3’0311;‘0} lr and 03 = Var (lflpm + v;"o) =Var (ﬁm + 'UiO) :
0* *
The GLS of (4.14) takes the form of

L= C | VI (Zi, 17yi0) VT (4.15)
Yo ; Yiolr ; Yiolr

V* = Cov (v}) = Ip + 021715, (4.16)

where

: 2 _ 2 G
where for notational ease we let o = o, (1 — (1_/))’%(2)*) .

13



Lemma 4.3 The system (4.14) is the conditional system of (4.13), conditional on y;o. The
resulting estimator (4.15) is inconsistent if T is fized because E (v}y) # 0 under (3.4)

ax 1

In other words, if T is fized, conditional on y;9 alone cannot yield a consistent estimator no

matter how large N is. The bias is of order % If T — oo, 3*0 is consistent. However, if

% —a#0< 00 asT — oo, S*C is asymptotically biased of order 1/%.

Remark 4.5 The difference between (4.9) and (4.14) is that the former is a legitimate con-
ditional system whether E (xyn;) = 0 or not, while the latter is not a legitimate system even

under E (zyn;) = 0.

Remark 4.6 When E (xyn;) = 0, treating yio as fived constants, the naive GLS is asymptot-
ically biased of order % On the other hand, conditional on y;o ignoring the fact that y; is
also a function of past x; s (s > 0) yields an estimator that is asymptotically biased of order
\/g, worse than treating initial value y;9 as fized constants (order of \/g ). The reason is
that treating yio as a fived constant, the system (3.1) of T equations has the initial value, Yo,
appearing only in the y;i1 equation. The other (T — 1) y;r equation does not contain yo as a
regressor. AsT goes to infinity, the error of ignoring the correlation between y;o and n; becomes
increasingly negligible. On the other hand, the conditional system (4.14) has each y;; equation

containing yio as a regressor, yet E (yjov}) #0 fort=1,...,T.

Remark 4.7 Arellano and Bond (1990) suggest to take the generalized method of moments
(GMM) approach to estimate the unknown parameters. The advantages of GMM are (i) there
is no need to consider if x;; are correlated with n;, and (ii) there is no need to consider the initial
value distribution. When N — oo, the GMM is asymptotically unbiased when T is fized. How-
ever, if (N,T) — oo, Alvarez and Arellano (2003) show that the GMM is asymptotically biased
of order \/% If an estimator is asymptotically biased, there could be significant size distortion
(see, for example, Hsiao and Zhang (2015) or Hsiao and Zhou (2015, 2017)).

5 Model with Heteroscedastic Errors

Although the above results are based on homoscedastic errors (Assumption Al(a)), we show in
this section that the statistical properties with regard to the consistency and order of asymptotic
bias for model (2.1) with fixed or random initial conditions remain valid with the heteroscedastic

errors, U,
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Assumption Al(b): The errors u; are independent of 1, and are independently distributed
over i and ¢ with mean zero and constant variance o2,, where 0 < 02, < co for alli =1,..., N,
1NN 2 _ 22
and ) ;L 04 = 0y < 00,

For model (2.1), the analogues estimator of (2.5) now takes the form

N -1 /N
Pheter,f = (Z yfi,—lvilyi,1> (Z y;,—1vilyz'> ; (5.1)
i—1 i—1

where jeper, p refers to heteroscedastic errors and y;o is treated as fixed constant, y; 1 and y;
are defined before and

2 2 -1 -2 )
V; = UuiIT + 0'771T1/T7 VZ = O <IT — H@lTl%) . (52)

0.2
where 5 = —-.

ui

Similarly, the unconditional system (2.12) now has the variance-covariance matrix Vi, where

o 2 21/
vV, = 02—01 o1t , (53)

where o2 is the same as before and O'%i =Var (yi), Vi = U%JT + afllTlif.

Thus, the analogues estimator of (2.15) is

N -1 /N N
Pheter,r = (Z y;,_1ci1yz'71> <Z Vi 1Clyi = (yio — 1) U()iQO'%l/TCilb"i,l) , (5.4)
i—1 =1

=1

where peper, refers to heteroscedastic errors and y;g is treated as a random variable, and C; =

2 4 _—2

The asymptotics of the GLS estimators (5.1) and (5.4) are summarized in the following

2 ~2 / : ~2
oyilr + o3,1rlp with 67, = o
lemma.

Lemma 5.1 Under assumption A1(b), A2, when N — oo, the naive GLS estimator (5.1) is as-
ymptotically biased of order \/% as (N, T) — oo, but the GLS estimator (5.4) is asymptotically
unbiased whether T is fixed for goes to infinity.

Remark 5.1 The above lemma states that whether the idiosyncratic errors u; is heteroscedas-
tic doesn’t affect the asymptotic properties of the QMLE when treating y;0 as fixed constant or

random variable. This result can also be generalized to model with exogenous variables.
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Remark 5.2 Similarly, the consistency and the order of asymptotic bias for the system (3.1)
with fixed or random initial conditions remain valid with time heteroscedasticity. Suppose u;
is independently distributed over t with variance o? and limp_ o % Z?:l 0? = 5% < oco. The

NT x NT covariance matriz of v = (vi,v},....v\) has the form of
E(W)=IN®VU+IyRoilrly =Iy® (V+oplrly),

where ¥ = diag (0%, . ,02T) and @ denotes the Kronecker product. Similar, but more laborious

manipulations, show that the order of asymptotic bias is the same as the homoscedastic case’.

6 Monte Carlo Simulation

In this section, we investigate the finite sample properties for the estimator conditioning on
the initial values being fixed (Bai (2013) factor estimator) or random (conditional GLS and
the unconditional GLS) for dynamic panel model. We consider the following data generating
processes.

DGP1: Panel time series model

Yit = 1; T pYit—1 + Uit (6.1)
DGP2: Dynamic panel with exogenous variables
Yit = 1; + pYit—1 + TitS + wit, (6.2)
where the exogenous variables x;; are generated as
i = 0.5 41 + 0.4n; + v,

where vit ~ IIDx? (1) for all i and t¢.
DGP3: Random effects dynamic model with the same DGP of (6.2), but x;; are generated
as
Tit = 0.5 41 + vit, (6.3)

where vy ~ IIDx? (1) for all 4 and ¢.
For these three DGPs, we assume that n;, ~ IIDN (0,1) for all i. For the values of p and g,
we let py = 0.5 and 8 = 1.5 We also let T = 10,100,200 and N = 100, 200, 500. We generate

T + 100 observations, and the first 100 observations are discarded.

’The derivation for the asymptotic properties of the naive GLS (2.5) when u;; is time series heteroscedastic

is avaiable upon request.
To save the space, here we only report the simulation results for p, = 0.5. Additional simulation results for

po = 0.2 and 0.8 are presented in the Appendix.
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In order to examine the finite sample performance of the QMLE or GLS, we generate the
idiosyncratic errors as homoscedastic or heteroscedastic as follows:

Case 1: Homoscedasitic errors

We generate u;; ~ IIDN (0, 1) for all 4, ¢.

Case 2: Heteroscedasitic errors

We generate u;; ~ IIDN (0, a?) for all 4, ¢, where o2 is iid draw from 0.5 (1 +0.5x2 (2)) for
all 4, with x? (2) being the Chi-squared distribution variable with degree of freedom of 2.

For DGP (6.1), we consider the factor estimator or naive GLS (2.5), and the conditional
GLS conditional on y;o — p only (formula (4.11) with x; = 0).

The DGP (6.2), E (zin;) # 0, and DGP (6.3), E (z4n;) = 0, we consider estimator (3.2),
(4.5), (4.7) (4.11) and (4.15).7 For comparison, we also consider Arellano-Bond type GMM
estimation (e.g., Arellano and Bond (1990)) for DGP (6.1)-(6.3). The number of replication is
set at 1000 times. Simulation results are summarized in Table 1-3 for homoscedastic errors and
Table 4-6 for heteroscedastic errors.

The GLS or conditional GLS requires the knowledge of o2 and a% or 02 . We obtain initial es-
timators for o2 and o, (or o) first using Anderson and Hsiao (1981, 1982) simple instrumental
variable estimator of p and 5 (8 = 0 for DGP1) to obtain

éir = Ayir — pAyir—1 — BAzy, i=1,2,...,N;t=1,2,...,T, (6.4)
then estimate o2 by
1 N T
~92 ~
e — 2 6.5

To obtain initial estimator for o2,

y Y X, & yio | 1
70 102 7 ~
~x = _ o _ — Cit| , (66)

where é;; is defined in (6.4). Then calculate the residuals

we also need initial estimator of v and a, which can be

estimated by

T
1 N A R ok
&= tE_l (yit — PYit—1 — Brit — Yyio — Xja ) 7 (6.7)
and
1 Y 52
62 = ¥ E’ 1 e — 7 (6.8)
1=

TGLS estimators (4.7) and (4.11) performs quite similar to each other. So we only display simulation results

for GLS estimator (4.7). Estimation reults of GLS estimator (4.11) are avaiable upon request.
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However, the two step procedure of estimating 6121) could yield negative value. In the event
that an estimator 62, < 0, we let 62 = 0 in estimating V.

Tables 1 and 2 summarize the bias, root mean squared error (RMSE) and actual size based
on the critical value of 1.96 for p = 0.5 for different combination of N (100, 200, 500) and T
(10, 100, 500) when the idiosyncratic errors are homoscedastic and heteroscedastic for DGP1,
respectively. As expected, when N and T are of similar magnitude, the Bai (2013) factor
estimator or naive GLS has negligible bias and the actual size is close to the nominal value
of 5%. However, if N is much larger than T, then there is significant size distortion and the
distortion increases with the value of p. For instance, for N = 100, T' = 10, the actual size is
38.5% for p = 0.5 (9.1% for p = 0.2 and 100% when p = 0.8 in the Table A1 and A2). Moreover,
the size distortion increases with the ratio N/T. When N = 500 and T' = 10, the actual size for
nominal value 5% significance level is 36.2% when p = 0.5 (24.7% for p = 0.2 and 100% when
p = 0.8 in the Table Al and A2). On the other hand, the conditional GLS estimator conditional
yio — M, is indeed asymptotically unbiased, and the actual size is close to the nominal size for
whatever combination of N and T and for whatever value of p. Furthermore, the bias and root
mean square error (RMSE) of the conditional GLS are substantially smaller than the estimator
treating initial values as fixed constants. Also, similar findings can be observed in Table 4 when
the idiosyncratic errors are heteroscedastic. For the GMM estimation, it is obvious that GMM
is asymptotically biased of order %, the bias is quite significant when IV is relatively small, and
the size distortion is quite significant if the ratio of % is large.

Tables 3-4 summarize the results for the different estimators for DGP2 (fixed effects model)
when X; = (1,:@)/ for homoscedastic and heteroscedastic errors, respectively. As expected,
ignoring the correlation between the individual effects and regressors lead to significant bias
and size distortion for the factor estimator (3.2). However, even with the Mundlak-Chamberlain
approach of correction of the correlations between the individual effects and regressors, it could
still lead to significant size distortion when IV is much larger than T if initial values are treated
as fixed constants (GLS (4.5)). The distortion increases with the ratio £ and the absolute
value of p. For instance, for a nominal significant level 5% test, when T'= 10, and N = 200, the
actual size is 22.7% when p = 0.5. When T = 10, and N = 500, the size distortion increases to
40% when p = 0.5. The size distortion will disappear only if N and T are of similar magnitude.
On the other hand, the feasible unconditional GLS or feasible conditional GLS (GLS (4.7) and
(4.11)) have the empirical size close to the nominal size for whatever combination of N and T
Moreover, they have smaller bias and RMSE than the estimator treating initial values as fixed
constants. Tables 3-4 also show that although ;9 are treated as random but conditional on

yio alone to take account the randomness of y;y can also yield significant size distortion if NV
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is much larger than 7. While for the GMM estimator, it is still asymptotically biased, but the
size distortion is quite small.

Tables 5-6 summarize the results for the different estimators for DGP3 (random effects
model) or homoscedastic and heteroscedastic errors, respectively. When the individual effects
and regressors are uncorrelated, b = 0. The size distortion of the factor estimator are of similar
magnitude to the pure time series model (DGP1) when N is much larger than 7. There will
be no size distortion only when NV and T are of similar magnitude. However, implementing the
unneeded Munlak-Chamberlain adjustment (GLS (4.5)) further increases the size distortion. On
the other hand, the performance of unconditional and conditional feasible GLS is not affected
by implementing the unneeded Mundlak-Chamberlain adjustment (GLS (4.7) and (4.11)). The
actual size is close to nominal size for whatever combination of NV and 7. The GMM estimation
performs similarly to DGP 2 and still is still asymptotically biased.

Table 7 summarizes the results of naive GLS and conditional or unconditional GLS for
DGP2 following the Chamberlain (1980) approach of considering the individual effects or initial
observations on all observed regressors X; = (1,xg)' when N and T are of similar magnitude.
As one can see if N =T, then using the Chamberlain approach can still lead to significant size
distortion due to bad approximation of the variance of (7; — E (n;x;) using the Chamberlain
approach when T greater than or equal to V. On the other hand, if N > T using either the
Chamberlain approach or Mundlak approach can lead to asymptotically unbiased inference.
However, the Mundlak (1978) approach yields smaller bias and RMSE. This suggests that
perhaps empirically one should just use the time series average Z; instead of x; to condition n;

8
or Yio.

7 Concluding Remarks

Whether an estimator is asymptotically biased or not plays a crucial role in obtaining valid
statistical inference as shown in our simulations as well as those of Hsiao and Zhang (2015),
Hsiao and Zhou (2015). For a dynamic panel data model, in addition to the issue of fixed
vs random effects specification, there is also an issue of whether the initial values should be
treated as fixed constants or random variables. Because many dynamic panel data estimators
can be viewed as the quasi-maximum likelihood estimator (QMLE) under different initial value
assumptions, we take a quasi-likelihood approach to illustrate the sensitivity of valid statistical

inference to the initial value distribution assumptions and cross-sectional dimension N and the

8This result is based on the model is correctly specified. If a model is misspecified, the Chamberlain approach

may perform better.
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time series dimension 7. When N is fixed and T is large, it does not matter whether the initial
values are treated as fixed constants or random variables. When N is large, how the initial
values are treated becomes very important. Treating initial values as fixed constants, the QMLE
is inconsistent if T' is fixed and N — oco. When both N and T are large, it is consistent but
asymptotically biased of order % for a panel time series model whether the individual-specific
effects are fixed or random or a general dynamic panel model containing strictly exogenous
explanatory variables when the effects are random and independent of the explanatory variables.
However, if the effects are correlated with the included exogenous variables, the estimator (3.2) is
asymptotically biased of order \/g as (N,T') — oo. Using the the Chamberlain (1980)-Mundlak
(1978) approach to condition the effects on observed explanatory variables can reduce the order
of asymptotic bias to % On the other hand, the QMLE with a properly modeled initial value
distribution combined with Chamberlain-Mundlak approach is consistent and asymptotically
unbiased whether T is fixed or goes to infinity as long as N — oco. We summarize the main
conclusions in Table 8.

There is also an important difference in formulating the initial value distribution for a pure
time series model and the model that also contains other covariates. For a pure time series
model, modeling y;0 = i + v;o is sufficient. For a dynamic model containing other covariates,
then y;¢ is also a function of past covariates. Conditioning on observed covariates can get around
the incidental parameters issue only if the data generating process for the covariates is homoge-
neous across 7. Finally, although asymptotically there is no difference between the Chamberlain
(1980) approach of conditioning the individual effects or initial values on individual’s observed
regressors and Mundlak’s (1978) approach of simply conditioning on their time series means,
our simulation results appear to favor the Mundlak’s (1978) approach, in particular if 7" is not

small based on the assumption that the panel data model is correctly specified.
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Table 1: Sample mean, bias, RMSE and size of p when p = 0.5 for DGP1 (6.1) and Case 1

N 100 200 500

T nGLS GLS GMM | nGLS GLS GMM | nGLS GLS GMM
estim | 0.7043 0.5014 0.4653 | 0.6976  0.5005 0.4810 | 0.6828  0.4990  0.4914
10 | bias | 0.2043 0.0014 -0.0347 | 0.1976  0.0005 -0.0190 | 0.1828 -0.0010 -0.0086
rmse | 0.2501  0.0399 0.0698 | 0.2333 0.0274 0.0487 | 0.2071  0.0174  0.0296

size 38.5% 5.2% 9.1% 34.4% 5.1% 7.8% | 36.2% 4.4% ™%
estim | 0.5002 0.4998 0.4843 | 0.5001  0.4997 0.4916 | 0.5003  0.4999  0.4922
100 | bias | 0.0002 -0.0002 -0.0157 | 0.0001 -0.0003 -0.0084 | 0.0003 -0.0001 -0.0078
rmse | 0.0088  0.0088 0.0182 | 0.0063 0.0063 0.0108 | 0.0042 0.0042  0.0091

size 5% 5% 41.7% 5.6% 5.5% 222% | 6.1% 6% 40%
estim | 0.4998  0.4997 0.4918 | 0.4999  0.4998 0.4964 | 0.5000 0.4999  0.4967
200 | bias | -0.0002 -0.0003 -0.0082 | -0.0001 -0.0002 -0.0036 | 0.0000 -0.00001 -0.0033
rmse | 0.0061 0.0062 0.0103 | 0.0044 0.0045 0.0057 | 0.0028  0.0028  0.0044
size 4.4% 4.7% 26.1% 5.2% 5.2% 12.3% 5.1% 5% 20.2%

Note: 1. "nGLS" refers to the naive GLS (2.5) treating ;0 as fixed, "GLS" refers to the naive GLS
(2.15) treating y;0 as random. "GMM" refers to the Arellano and Bond (1990) type GMM.

2. size is calculated for Hg : p = 0.5.

Table 2: Sample mean, bias, RMSE and size of p when p = 0.5 for DGP1 (6.1) and Case 2

N 100 200 500

T nGLS GLS GMM | nGLS GLS GMM | nGLS GLS GMM
estim | 0.6991 0.4999 0.4585 | 0.6988 0.4988  0.4744 | 0.6893 0.4990  0.4887
10 bias 0.1991 -0.0001 -0.0415 | 0.1988 -0.0012 -0.0256 | 0.1893 -0.0010 -0.0113
rmse | 0.2494 0.0435 0.0776 | 0.2379 0.0294  0.0548 | 0.2168 0.0191  0.0332

size 37.5% 5.3% 9.8% 34.2% 5.3% 8.4% 35.2% 4.7% 6.6%

estim | 0.5005 0.5001 0.4843 | 0.5002 0.4999 0.4907 | 0.5004 0.5000  0.4960
100 | bias 0.0005 0.0001 -0.0157 | 0.0002 -0.0001 -0.0093 | 0.0004 0.0000 -0.0040
rmse | 0.0096 0.0096 0.0187 | 0.0071 0.0071  0.0120 | 0.0044 0.0045 0.0062

size 5.2% 5.1% 34% 5.1% 5.4% 24.2% 5.2% 4.9% 13.2%

estim | 0.4998 0.4997 0.4918 | 0.5000 0.4999 0.4922 | 0.4998 0.4997 0.4961
200 | bias | -0.0002 -0.0003 -0.0082 | 0.0000 -0.0001 -0.0078 | -0.0002 -0.0003 -0.0039
rmse | 0.0067  0.0067 0.0106 | 0.0050 0.0050 0.0093 | 0.0030 0.0030  0.0050

size 5.3% 5.4% 22.8% 5.3% 5.4% 32.2% 5.2% 5.4% 22.2%

Note: size is calculated for Hy : p = 0.5. See note 1 of Table 1.
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Appendix

A.1 Derivation of Lemma 2.1
We first note that by substituting (2.2) into (2.5) yields
N -1/ N
POQMLE.f — P = (Z yg,1V1yz‘,—1> (Z yi AV (e + U—z‘)) : (A1)
i=1 i=1

Making use of (2.7), we obtain

T T T-1
1—p 1 1—-p
S g1 = : T-1)—p—F |,
t:1yz,t1 1py10+1p|:( ) 1% 1*P :|771
1— T—1 1— T—2 2
+{ P U1 + p Uig + -+ + P ui,T2+ui,T1}. (AQ)
1—p 1—p 1—-p

Following Alvarez and Arellano (2003), it can be shown that the denominator of (A.1)
divided by NT converges to # as (N,T) — co. When N — oo or (N,T) — oo,

2
Iy

N
1 / !/
Ny e T 1) 1,
W;yl,l ( T 1+TO'% T T) T7;
_ N Toy (T—-1)-Tp+p"
= 2
T (1+To2)(1-p) T

N T 1 &
+\/ 75 CaTy i N D viori + o (1) (A.3)

=1

and
N 2
1 / 0-7) /
_ y.7_1 IT - T3 1T1T> u;
VNT ; ' ( 1+To;

N T 2 T

1 N To, (T—-1)—-Tp+p
R D) Ty s (A4
VNT &= P N T (1 o2y (1= p)? T (A-4)

The second term of (A.4) cancels out with the first term of (A.3)". The first term of the

numerator of (A.4) converges to a normal distribution under fairly general conditions (e.g., u;

4+€ ‘4-‘,-5

and 7n; are normally distributed or E|ui| " < oo and E'|n; < oo for some € > 0, see, for

9We owe this point to the private communication with Jushan Bai.
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example, Hsiao and Zhang (2015) or Hsiao and Zhou (2016)). The first term of the numerator
of (A.3) is O, (ﬁ) if plimy_ oo Z _ 1 Yion; is a nonzero constant. Thus, if NV and T are
, % — a < oo as Bai (2013) has assumed, the estimator (2.5) is asymptotically
unbiased. On the other hand, if N is much larger than T such that % — ¢ # 0, the second

term of the numerator multiplied by v NT converges to a constant that is proportional to /c.

of similar order

A.2 Derivation of Lemma 2.2

The inverse of variance-covariance matrix V is given by

-1 21/ -1
o w —0y%07 17.C
—0,°C o1y C~
where
w = og—oilp (Ir+ a%lTlﬁ[)_l o2l
4
oiT
= 0‘8 —_ 172,
1+To;
and
5.2
C = I+ 6,101, with C™h =1y — 71T1T. (A.6)
where 5% = 0'3] —otoy?.

Consequently, we have

N -1
ST (A 1 _
NT (pQMLE,r - P) = (NT Z y;,flc 1Yi,—1>
i=1

N
1 _ 1 _ _
X <\/ﬁ Zy;_lC Yl + wg) — INT Z (yio — p) 0 20717:C 1Yi,@>7)
i=1 '

We note that C and C~! are of the same form as V and V!, then

_ 1
E(y; ,C'pilr) = TM%E (vi_1lrm;) = 1 +T~ <Z Yit— 177z>
-1

1
= H_T&QE (yiom' + Z yz‘t%’)

t=1

_ 2 1-p'
- 1+T <UI+Z< .%0771 +E(77@)1p>>

1 1— T 0-2 _ T
_ _ P2y 20 (po1-27P )}, (Asg)
L+To, \ 1—p 1—0p 1—0p




and

(A.9)

(A.10)

/ —1 _ / . 077 / /R
E(yi-1Cilw) = E(yiw) - 1+T57277E (vi—1lrlpw) = 1+T~ (Z Yiyt— 12%&)
52 T-1 T-1
n
= ——— E (yiuie) + Y E (yisuit)>
2
1+ Ta; (t:l s>t
52 < T-2 T-1
SREE = CEES 3 o
)
1+ Tay t=1 s=t+1
=2
= oy L T_l_p—pT ]
1+T621—p 1—p
Also,
E [(yio — 1) 00 20717C; Ny 1]
1
-2 2 /
= o001 ———=F (viol7y; —
0 11+T5'727 ( i01lT7Yi, 1)
1 o} p—p"\  1-=p"
1+ To, [1-p 1—p 1—p
since

T 7-1
E (violyyi-1) = E (Z yz‘,t—lvzo) = E (yiovio) + »_, E (irvio)
=1
7-1 p t—1
= 0y +ZE (Oézp+Pyzo+ZP Ug— s) Vi0
1

s=0

T-1

T—1

1—pt

2 E 2 E 2

= 0'0+ 1—p01+ ptO'(),
t=1 t=1

2 T T
_ 1—
1—p 1—p 1—p

Combining (A.8)-(A.10), it follows that the numerator of (A.7) has expected value 0, thus

the QMLE of ~ treating y;o as random variable is asymptotically unbiased as long as N — oc.
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A.3 Derivation of Lemma 3.1 and Lemma 3.2

Rewrite (3.2) as

5 N -1 /N
( AnGLS ) — < ng—lzl> (Z Z;V_l}’l)
BTLGLS i=1 =1

N -1/ N
; ) + (Z zgv—lzi> (Z ZIV (il + ui))
=1 =1
-1

N N / -1
N oy oV 1 ;
— () (> zvoz, Zz:]\l[yz,l—l 1 (517 + ;) (A.11)
B i=1 Zi:l Xivi (77le + ui)

where V is defined in (2.4).

For the numerator of the second term of (A.11), we have
N

R N T 1
-1 / . _
g x,V nlr = 5 Plimy_ = E Zin;. (A.12)
v/ NT pt Tl—i—TU?7 Ni:1

Under the assumption that E (z;n;) = 0, pimy_co ZZ]\; 1 Zin; = 0. The limiting distribution

of \/]1\[7 Zf\; 1 Xi V7 (n;1r + ;) is normally distributed with mean zero. Lemma 3.1 follows
from the proof of Lemma 2.1.
When E (zn;) # 0, pimy_ e+ SN @i # 0, (A.12) converges to
S

o Al
1+ To2 o), (A.13)

where plimN_,oo% Zfil z;n; = c. Thus, when T — oo, (A.11) converges to (p, 3)", However,
the numerator of the last term of (A.11) divided by v NT reduces to

N _

( ﬁ >im1Yi AV (il + w) )

N _
ﬁ S XV (1l +wy)

N T VNT 1-pT 3. N

\/]lViT Zizl thl Yit—1Uit + T(1+TU2) 1_pp pth—»oo% Zi:l Yi07);
- 1 N T ! N Tg +0p (10A-14)
VNT Zi:l Zt:1 TitWit + 4/ T 1+702

Under assumptions Al(a) and A2, it can be easily verified that the terms ﬁ ZZ]\L 1 Zthl Yit—1Uit
and \/% Zl]\il Z?:l i converge to normal distributions with zero means if u;; and n; are

normally distributed or E |uy|*™ < oo and E |n,|*"
Hsiao and Zhang (2015) or Hsiao and Zhou (2016)). However, the second term in the first

element of the last vector on the right hand side of (A.14) is of order {/2% and the second term

< oo for some € > 0 (see, for example,

3
of the second element is of order \/%. Therefore, the naive GLS for the general fixed effects

. . . . N
estimator is asymptotically biased of order /7 as (IV,T) — oc.
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A.4 Derivation of Lemma 3.3

The proof follows that of Lemma 3.2, here we only provide the sketch of the proof. We note

that .
bors b al =15 al =1 V40
- - = (> zv'z,| Y zZV : (A.15)
6GLS ] i=1 i=1 ]-T771 +u;

where V1 essentially takes the similar form as (A.5) except for few notation changes, i.e.,

~—1 o211 ~-1
- @ —=z17..C
Vi L. o , (A.16)
—U%C 17 C
0
where & = 0(2) - % and
~—1 2 1 6727
C = (I 72 1p15)  =1p — — L 14515, A17
(T+U»,7TT) T 1+T6_127TT ( )
with 6% = O'% — 0&0072.

Now the numerator of (A.15) divided by v NT takes the form,

1 i ( X, 0 ) ( ot —052031%(3_1 ) ( Vio )
NT=Z\ 0 7 —0y°C o1y Cc! Lrn; +u;
- v - 0320215 C ! (1, + w)
) ( —04*C o210 + C71 (1rm; + w;) )
%; |0 i — 09 202 1pC 7 (L + ui)}
— —— y§7_1 —0626*1072_11“1]2‘0 +Ct (1rm; + uz)} . (A.18)

x; [—UEQCflalevio + C! (Irm; + uz)}

For the first case when FE (zn;) = 0, we observe the expectation of the first and third
component of (A.18) is zero, and the second component also has zero mean by following the
derivation in (A.8)-(A.10). As aresult, if E (z4n;) = 0, (A.18) will have zero expectation either
T is fixed or goes to infinity, i.e., the GLS estimator (3.8) is consistent and asymptotically
unbiased as long as N — oo.

For the second case when E (x;1,) # 0, then we can observe that the expectation of the first
and third component of (A.18) is no longer zero, and the expectation will be a finite constant
depending on E (z;n;) . If T is fixed, in view of (A.14), % leil Zg\?’l ( vio ) will not

Lrn; 4w
converge to zero as N — oo, and will be O, (1), i.e., the GLS estimator (3.8) is inconsistent. If

T — oo and % — a # 0 < oo, it is asymptotically biased of order \/a.
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A.5 Derivation of Lemma 4.1
It follows from (4.5) that

N 7 -1
OnGLs — 0 = [Z ( ! ) V1 (Z;,17%)

. (A.19)
i=1 X1

N 7.\ -
[Z ( o )V—l (wilr +u)
1=1 T

where the numerator on the right hand side (RHS) divided by v NT is

z; Y Y Zv (wflT-i-uz')
FZ ( - )V (wilr +u;) = Z ( le, 71wl + ) ) . (A.20)

=1

using the relation

— 1
Vilp=———1rp,
T 1 +TO'%U*O'172 r
we obtain
_ N my;,—ﬂTU’?"’yg,—lvflui
1 ZV (wilr + w; 1 ey . —
o B A e ) e e AR A
NT = \ %17V (wilr + u;) NT = w*
1= 1= T /
mxzw +X21Tuz

(A.21)

For model (4.2), under the projection (4.1), we have
E (x;w}) =0,
also, under the assumption of strict exogeneity of x;, we have
E (xju;) = 0.

Thus, the second and third elements of the RHS of (A.21) have zero expectation.
For the first element of the RHS of (A.21), we first note that by continuous substitution,

model (4.2) can also be rewritten as

1 _ AT
yzt_pyzﬂ""_lii +7 Ib +Zp]xzt ]/B+Zp]uzt -j- (A22)
7=0
Then
1
HTU—_gyz—llTU} +vi VTl
w*Ou
1 02*0 2
= — w; +y; - 171%u A.23
1—|—T0‘ *J;2Zylt1 ny 145 1—|—T0‘ _nyL —1+Ti7 U4 ( )

t=1
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The expected value of (A.23) in view of the derivation in (A.9) is equal to

/ * / N —1
———— vy, 1w +y, _;V Ty
<1+T012U*0;2yz’ RS Z>

2 T 1 9 __9

= T 17p Ow*Oy / /
T Z - E (y; {1717,
1+ a%u*aqf p—t 1-p 1 T02w*0772 (yZ, 1i7dlr z)

_ T [(T—l)—ll_pT—(T—l—p_pTﬂ

(1—p) (1+T012U*G;2) —p 1—0p

0.2

w*

(1-p) (14 To2.0.?)
- of3)

As a result, the first term (A.19) of A.21 is of order @/%. Consequently, if T is fixed,

then 9nGLS is inconsistent. If % — a < oo as T increases, VNT <3nGLS — 6) converges to a
normally distributed variable centered at zero. However, if N tends to infinity faster than T so
% —c# 0, VNT (SHGLS — 5) is not centered at zero, and using the Chamberlain (1980)-
Mundlak (1978) approach to get around the correlation between the effects and exogenous
variable without proper consideration of initial value distribution will still yield estimators that

are asymptotically biased of order /c.

A.6 Derivation of Lemma 4.2

We note (4.7) implies

éGLS — é = [Z Z;Q_lzi
=1

N .
[Z 70! ( vio )] : (A.24)
i=1

’w;le —+u;

and Q71! is similar in form to (A.16).

When E (x;n;) = 0, if the numerator of (A.24) have zero expectation, OcLs is asymptotically
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unbiased when N — co. We note that the numerator of (A.24) divided by v NT becomes

%0
e N 0 Xxlr ( ot —0y%021,.C71 ) ( w; + ﬁipm + 22500 Pui—j )
NT= 1| 0 X, ~0y2C o2l Cc! wily 4+ w;

0 yé,fl

%0

_ 1 N 0 Xilp ( @t —oy 20215.C! ) ( vio ) (A.25)

NT | 0o x —052C 1021y c! vi | '

0 yg,fl

Since E (ziuir) = 0 and E (zgw)) = 0, whether E (zin;) = 0 or not, then the expectation of
(A.25) is zero as long as N is large, i.e., (A.24) is asymptotically unbiased.
For the conditional QMLE (4.11), we have

-1

é*c dc N Z; N Z;
be | —| b | =D | x| V(2 10K, 1ryio) S| x|Vl
y gl =\ giolh =\ violy
(A.26)
By construction of v} in (4.9), we have that

E(Ziv;) = 0,

E (%) = 0,

E (yiovi) = 0,

as a result, the numerator of (4.11) divided by v NT will have expectation zero as long as
N — 0, i.e.,, the conditional QMLE (4.11) asymptotically unbiased as long as N — co.

A.7 Derivation of Lemma 4.3

The derivation is the same as before, here we only sketch of the derivation. From (4.15), we

have

. -1
B LY Nz - Nz -
Yo Yo i=1 yiO]-T i=1 yiOlT

We note that

. (A27)

[e o] [ee]
E(yiov) = E | yio ( n+BY_plwij+ > puij| | #0,
j=0 =0
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so is E (z4V]) # 0 if z; is not independently distributed over ¢t. Therefore, when 7" is fixed and

N — o0,
1 & 1 N
: \7x— 1~
pllmN*}OOMj;Z;V v, = 1+To Qpl NHOON; ZOT Zzlt
1
= O = A28
(7) (A29)
and
1 & 1 1 &
. (7*x—1~* : *
pthHooNT;yiO]-,TV v, = HmbpthﬂooNgvioyio
1
= 0O[=]). A.29
(7) (4.20)

In other words, when T is fixed and N — oo, S*C is inconsistent.
When (N,T) — oo

N N T
1 remtes N T 1 L1 B N
TNT BV _VTHMNZviOTZZit_Op< T)’ (4.30)
1=1 w =1 t=1

and

N
1 N T 1 N
E 1V*1*: —7—5 0 = O — . A.31
VNT NT biotr VT 15 Toy N & 00 =\ V7 (A.31)
If7T — oo, 3*0 is consistent. However, if % —a#0<o0asT — oo, 32 is asymptotically

biased of order H%'

A.8 Derivation of Lemma 5.1

First, let’s consider the GLS estimator (5.1). For this result, following the previous derivation

for the homoscedastic errors, we have

N -1
N [ 1 _
NT (pheter,f - p) = <M Zy;,—lvi 1yi7—1> <\/7 Zyz —1V 77le + uZ)) :
=1 i=1
(A.32)
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It follows from the previous derivation of Lemma 2.1 that

1 Y 1 L o2
—2_/ —1
T;Um Yi—1V, L1 \/W;:L‘FT%zyl’l T;
l—pT 1 ~2
- ﬁNTzlJFT Yioll;
1—,T—1
(T —1) = pr a1 ZN: o2
1—0p n\/ﬁizll—l—T%i
T
—p NTzllﬁLT yzﬂnz
(T—l)—pl‘l’f N

1 7
L L A.33
1—p \/NTgl—i-T%i ( )

2
where the last equation holds by using the definition of »; = —-, and

uz

T
(T-1)—-p = 1 i p” (A34
1—p VNT “ 14T '

=1

M-
E

s
Il
—_
o~
Il
i

-2
0.0 Yit—1Uit —

N
\/]1\[7 ;y;,—ﬁ’;lui
1 .- -2 1 al (7_2%Z

= m;;gwyi’tlmt_mgl"‘T yz_llTlTuZ

- 1%%‘72%7&—1%—@”,01 =il ia Oui i
mizlt:l e I—p \/WZ - Y T
1
VNT

It is obvious that the second term of (A.33) cancels out with the second term of (A.34),
thus

N _1
e 1 _
NT (pheter,f - p) = (NT Zy;,—lvi 1}’2‘,—1>

N 1 To,?
(FZZO'myzt 1Uzt+ T'?’NZl—FT z({%) )

=1 t=1

Consequently, the first term of the numerator of (A.35) converges to a normal distribution
under fairly general conditions as stated in derivation of Lemma 2.1. The second term of the

—2
numerator of (A.35) is O, ( \/ T3> if plimy o7y ZZ 1 ﬂUT% yion; converges to a fixed constant.
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Thus, if N and T are of similar order, % — a < oo as Bai (2013) has assumed, the GLS
estimator (5.1) is asymptotically unbiased. On the other hand, if N is much larger than T
such that % — ¢ # 0, treating initial value y;o as fixed constants yields an estimator that is
asymptotically biased of order /c.

Let’s now consider the asymptotic properties of the QMLE estimator (5.4). To begin with,

for the inverse of the variance-covariance matrix (5.3), by using the formula of the block matrix,

we have
-1 ! —
. : 21.C;
vl= ( zwz X ~00; ‘711 >’ (A.36)
—00,C; o2 C;
where )
o 07 T ~
Wi =00 T A Ci= ol + ey, (A.37)
with o 0'm = 0727 - 0‘110&2, and
-1 2 PRV b T i ,
Ci = (omIT +0m-1T1T) =0, (IT — T — 171 > (A.38)
52
with >; = Q” .

(%3

Following the previous derivation, it is obvious that

N -1
S A 1 _
NT (pheter,r - P) = <NT Z yg,—lci 1Yi,1>

(\/7 Z yz 710 ”th + ui) - (yiO - /~L) 001 UllTC Yi Uﬂ%)

The first term of the numerator of (A.39) has

F Zyz LG (il +w) = ﬁ; Cilnilr + ]1VT ﬁ;yé,_lciluu (A.40)
with
C;l = (0%l +52%1r1h) T =02 <IT - j}%uw) :
Clly = 1;_“5;1%
where &371- = J% — 0‘11051-2 and i = ;z”

u
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The expectation of the first term of (A.40) is

-2
—1 g, .
E()’é,—1ci 77¢1T) = 1_|_u%%E(y;,—11T77z‘) = 1+T~ <Z?/zt 1771>
0_7.2 T-1
— ul E . . . .
T <ylom + ;ynm>

; p
—2 T 2 T
. 1— o _
— _Tui ( P of + (T—l—p P >) (A.41)
—p

1+Tx \ 1—p

by using the iteration y;; in (A.2) and

E(yg,—lc;lui) = 1:2 [ (YZ —1111) 1—|—T~ 11T1TUZ)}

9~

E (y;,
Oyi %4
= -2 __F
1 +T%1, < yzt 1Zuzt>
o 25 : —
, T
= —#T% (;E YitWit ) Z yzsuzt))

s>t

= % 1 P —=p"
- _W<(T—1)+Hp(T—2)—(1_p)2>. (A.42)

The expectation of the second term of (A.40), we have

N
1 _ _
NT > E|[(yio — 1) 00 715:C; tyi 1]
=1

N -2

1 o
- NT OZQU%1+T~~E (viol7yi,—1)
i=1
N -2 2 T T
1 ~2,2_ ui 91 P—P L—p" o
= — T—-1- ~ A.43
NTi Ooi 11+T%Z 1—p 1—p + 1—,0001 ( )

since

T T-1
E (viol7yi-1) = E (Z yi,t—l“iO) = E (yiovio) + »_, E (yirvio)
t=1 t=1

2 T
1—

= A (T—l i p>+ P o2,
1—-p 1—p
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Substituting the above results (A.41)-(A.43) into (A.40) yields
E[y; 1C;7  (milr +w)] — E [(yio — 1) 05;°0117C; tyi—1] =0,
since

oa; (1= p) (1 +T35){E [y; 1C; " (nilr + w)] — E [(yio — p) 0570315C; lyi 1] }

T T
— (1— 1) 2 2(p_q_PZP \_2(p_q1_P_P
( p)al—i-an( -, a5 -,
T T
- pP—P - P—P
+U‘1100i2<T—1— 1—p>_00i20%<T_1_ 1_p>—(1—pT)J%

= 0.

Thus, the QMLE of «y (5.4) treating initial value as a random variable is asymptotically unbiased

as long as N — oo.
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A.9 Additional simulation results

This section contains the additional simulation results for DGP1-3 when p = 0.2 and 0.8.

Table Al: Sample mean, bias, RMSE and size of p when p = 0.2 for DGP1 (6.1) and Case 1

N 100 200 500
T nGLS GLS GMM | nGLS GLS GMM | nGLS GLS GMM
estim | 0.2260 0.2019  0.1832 | 0.2241  0.2005 0.1904 | 0.2228 0.1994  0.1958
10 | bias | 0.0260 0.0019 -0.0168 | 0.0241  0.0005 -0.0096 | 0.0228 -0.0006 -0.0042
rmse | 0.0482 0.0371 0.0534 | 0.0370 0.0260 0.0377 | 0.0291 0.0168 0.0235
size 9.1% 4.6% 6.6% 14.1% 4.9% 5.5% 24.7% 4.5% 5%
estim | 0.2001  0.1999  0.1879 | 0.2000  0.1998  0.1937 | 0.2000 0.1999  0.1973
100 | bias | 0.0001 -0.0001 -0.0121 | 0.0000 -0.0002 -0.0063 | 0.0000 -0.0001 -0.0027
rmse | 0.0099 0.0099 0.0158 | 0.0070 0.0070 0.0096 | 0.0046 0.0046 0.0055
size 4.1% 4.1% 23.8% 5.6% 5.8% 13.8% 5% 5.2% 8.6%
estim | 0.1999  0.1999 0.1937 | 0.1998 0.1997 0.1937 | 0.1999 0.1998 0.1974
200 | bias | -0.0001 -0.0001 -0.0063 | -0.0002 -0.0003 -0.0063 | -0.0001 -0.0002 -0.0026
rmse | 0.0070 0.0070  0.0094 | 0.0049 0.0049 0.0080 | 0.0032 0.0032 0.0042
size 4.5% 4.5% 14.4% 5.4% 5.4% 24.1% 5% 5.1% 12.7%
Note: size is calculated for Hy : p = 0.2. See note 1 of Table 1.
Table A2: Sample mean, bias, RMSE and size of p when p = 0.8 for DGP1 (6.1) and Case 1
N 100 200 500
T nGLS GLS GMM | nGLS GLS GMM | nGLS GLS GMM
estim | 0.9799  0.7970 | 0.6819 | 0.9801 0.7977 | 0.7313 | 0.9799 0.7958  0.7680
10 | bias | 0.1799 -0.0030 | -0.1181 | 0.1801 -0.0023 | -0.0687 | 0.1799 -0.0042 -0.0320
rmse | 0.1799  0.0475 | 0.1529 | 0.1801 0.0334 | 0.1012 | 0.1799 0.0213 0.0579
size 100% 4% 21.1% | 100% 5.5% 14.6% | 100% 5% 10%
estim | 0.8009  0.7997 | 0.7790 | 0.8008 0.7996 | 0.7880 | 0.8011 0.7999  0.7948
100 | bias | 0.0009 -0.0003 | -0.0210 | 0.0008 -0.0004 | -0.0120 | 0.0011 -0.0001 -0.0052
rmse | 0.0067  0.0067 | 0.0223 | 0.0048 0.0049 | 0.0132 | 0.0033 0.0031 0.0064
size 5.3% 5.5% 80% 5.7% 4.9% 55.6% | 6.6% 4.8% 30.4%
estim | 0.7999  0.7996 | 0.7896 | 0.8002 0.7999 | 0.7902 | 0.8002 0.7999  0.7957
200 | bias | -0.0001 -0.0004 | -0.0104 | 0.0002 -0.0001 | -0.0098 | 0.0002 -0.0001 -0.0043
rmse | 0.0044 0.0045 | 0.0114 | 0.0032 0.0033 | 0.0104 | 0.0020 0.0021  0.0049
size 4.8% 4.8% 62.1% | 4.8% 4.3% 80.2% | 4.5% 4.5% 49.1%
Note: size is calculated for Hp : p = 0.8. See note 1 of Table 1.
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Table A3: Sample mean, bias, RMSE and size of p when p = 0.2 for DGP1 (6.1) and Case 2

N 100 200 500
T nGLS GLS GMM | nGLS GLS GMM | nGLS GLS GMM
estim | 0.2240 0.2003  0.1788 | 0.2220 0.1985 0.1856 | 0.2222  0.1987  0.1936
10 | bias | 0.0240 0.0003 -0.0112 | 0.0220 -0.0015 -0.0144 | 0.0222 -0.0013 -0.0064
rmse | 0.0505 0.0408 0.0580 | 0.0304 0.0282 0.0418 | 0.0297  0.0183  0.0267
size 8.3% 5.3% 6.1% 10.4% 5.4% 7.1% 20.5% 5.3% 5.5%
estim | 0.2001  0.1999  0.1877 | 0.1999 0.1999 0.1928 | 0.2002  0.2001  0.1970
100 | bias | 0.0001 -0.0001 -0.0123 | -0.0001 -0.0001 -0.0072 | 0.0002  0.0001 -0.0030
rmse | 0.0109 0.0109 0.0168 | 0.0079 0.0079 0.0109 | 0.0049  0.0049  0.0059
size 5.1% 51% 18.6% 5.1% 5.1% 13.6% 5.2% 5% 8.7%
estim | 0.1998  0.1997 0.1936 | 0.1999 0.1999 0.1939 | 0.1997  0.1997  0.1969
200 | bias | -0.0002 -0.0003 -0.0064 | -0.0001 -0.0001 -0.0061 | -0.0003 -0.00033 -0.0031
rmse | 0.0076  0.0076  0.0100 | 0.0055 0.0055 0.0083 | 0.0033  0.0033  0.0046
size 5.3% 5.3% 13% 4.9% 4.9% 18.6% | 4.6% 4.7% 14.7%
Note: size is calculated for Hy : p = 0.2. See note 1 of Table 1.
Table A4: Sample mean, bias, RMSE and size of p when p = 0.8 for DGP1 (6.1) and Case 2
N 100 200 500
T nGLS  GLS GMM | nGLS  GLS GMM | nGLS  GLS GMM
estim | 0.9802 0.7962  0.6662 | 0.9803 0.7970 0.7149 | 0.9803 0.7971  0.7618
10 | bias | 0.1802 -0.0038 -0.1338 | 0.1803 -0.0030 -0.0851 | 0.1803 -0.0029 -0.0382
rmse | 0.1802 0.0512  0.1698 | 0.1803 0.0361 0.1157 | 0.1804 0.0239  0.0637
size | 100%  4.4% 22.2% | 100% 5.7% 191% | 100%  4.7% 11.3%
estim | 0.8013 0.8002 0.7792 | 0.8011 0.7999 0.7871 | 0.8012 0.8001  0.7941
100 | bias | 0.0013 0.0002 -0.0208 | 0.0011 -0.0001 -0.0129 | 0.0012 0.0001 -0.0059
rmse | 0.0072 0.0070  0.0223 | 0.0054 0.0052 0.0143 | 0.0035 0.0034 0.0071
size | 4.9% 4.2% 71.7% | 4.3% 4.7% 55.1% | 6.9% 3.8% 31.8%
estim | 0.8000 0.7997  0.7897 | 0.8002 0.7999 0.7902 | 0.8001 0.7998  0.7951
200 | bias | 0.0000 -0.0003 -0.0103 | 0.0002 -0.0001 -0.0098 | 0.0001 -0.0002 -0.0049
rmse | 0.0048 0.0048 0.0114 | 0.0036 0.0036  0.0105 | 0.0022 0.0022  0.0055
size | 4.8% 5.2% 53.5% | 5.2% 5.5% 73.3% | 52% 5.2% 55.1%

Note: size is calculated for Hp : p = 0.8. See note 1 of Table 1.
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