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Abstract

We use a quasi-likelihood function approach to clarify the role of initial values and

the relative size of the cross-section dimension N and the time series dimension T in the

asymptotic distribution of dynamic panel data models with the presence of individual-

specific effects. We show that the quasi-maximum likelihood estimator (QMLE) treating

initial values as fixed constants is asymptotically biased of order
√

N
T 3 as T goes to infinity for

a time series models and asymptotically biased of order
√

N
T for a model that also contains

other covariates that are correlated with the individual-specific effects. Using Mundlak-

Chamberlain approach to condition the effects on the covariates can reduce the asymptotic

bias to the order of
√

N
T 3 , provided the data generating processes for the covariates are

homogeneous across cross-sectional units. On the other hand, the QMLE combining the

Mundlak-Chamberlain approach with the proper treatment of initial value distribution is

asymptotically unbiased if N goes to infinity whether T is fixed or goes to infinity. Monte

Carlo studies are conducted to demonstrate the importance of properly treating initial

values in getting valid statistical inference. The results also suggest that when using the

conditional approach to get around the issue of incidental parameters, in finite sample it

is perhaps better to follow Mundlak’s (1978) suggestion to simply condition the individual
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effects or initial values on the time series average of individual’s observed regressors under

the assumption that our model is correctly specified.

Keywords: Dynamic panel models, Individual effects, Initial values, Projection method,

Conditional or unconditional likelihood approach.

JEL classification: C01, C13, C23
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1 Introduction

In the estimation of dynamic panel data models with the presence of time-invariant individual

effects, three issues have arisen (e.g., Hsiao (2014)): (i) whether the unobserved individual-

specific effects should be treated as fixed or random? (2) whether the initial values should be

treated as fixed constants or random? (iii) does the relative size of cross-sectional dimension

N and time series dimension T matter? We argue in this paper that all three issues matter in

obtaining consistent estimation of unknown parameters and obtaining valid statistical inference.

We illustrate our points using a quasi-likelihood function approach because it allows us to

synthesize all these issues, also because many panel estimators such as the within estimator

(e.g., Hsiao (2014)), the Bai (2013) factor estimator or the Phillips (2010, 2015) control function

estimator can also be put in this framework.

Because the impact of the presence of time-invariant individual specific effects on the limiting

distribution differ between a panel time series model and a model involving other explanatory

variables, we consider these issues first in a panel time series setting, then for a general dynamic

panel model containing exogenous explanatory variables in section 2 and 3, respectively. Section

4 discusses the implication of Chamberlain (1980)-Mundlak (1978) approach to get around the

issue of incidental parameters. Section 5 considers the case of heteroscedatic errors. Section 6

provides a small scale Monte Carlo study to highlight the issues involved. Concluding remarks

are in Section 7. All proofs are in the Appendix.

Throughout this paper, we use (N,T ) → ∞ to denote that both N and T jointly go to

infinity, "→p" and "→d" to denote convergence in probability and in distribution, respectively.

2 A Panel Time Series Model

In this section, we discuss the asymptotic properties of the QMLE of a simple panel time

series model. We distinguish two cases: inference based on fixed initial and random initial

observations.

2.1 The model

There is no loss of generality to consider the following simple model,

yit = ρyit−1 + ηi + uit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where |ρ| < 1 and the initial value yi0 is also available for i = 1, . . . , N. We assume
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Assumption A1(a): The errors uit are independent of ηi and are independently and iden-

tically distributed (i.i.d.) over i and t with mean zero and constant variance σ2u. For ease of

notation, we let σ2u = 1.

Assumption A2: The individual-specific effects ηi is i.i.d. over i with mean zero and variance

σ2η.

Let yi = (yi1, . . . , yiT )′ , yi,−1 = (yi0, . . . , yi,T−1)
′ , ui = (ui1, . . . , uiT )′ and 1T be a T × 1

vector of ones, model (2.1) can be rewritten as a T -equation system of the form,

yi = yi,−1ρ+ 1T ηi + ui, i = 1, . . . , N. (2.2)

2.2 Fixed Initial Observation

Under the assumption yi0 are fixed constants, the quasi-likelihood function takes the form

L =
N∏
i=1

(2π)−
T
2 |V|−

1
2 exp

{
−1

2
(yi − ρyi,−1)′V−1 (yi − ρyi,−1)

}
, (2.3)

where

V = IT + σ2η1T 1′T , V−1 = IT −
σ2η

1 + Tσ2η
1T 1′T . (2.4)

The quasi-maximum likelihood estimator (QMLE) is obtained by maximizing the logarithm of

(2.3). When σ2u and σ
2
η are known, the QMLE is the (naive) generalized least squares (GLS)

estimator,

ρ̂QMLE,f =

(
N∑
i=1

y′i,−1V
−1yi,−1

)−1( N∑
i=1

y′i,−1V
−1yi

)
. (2.5)

where QMLE,f refers to QMLE treating yi0 as fixed constants.

Remark 2.1 Bai (2013) derives (2.5) from the factor analytic framework by minimizing1 ,2

log |ΣN (θ)|+ tr
(

ΣN (θ)−1 SN
)
, (2.6)

1Bai (2013) derived (2.5) under the assumption that yi0 = 0. However, one may view yi0 = 0 as a special case

of yi0 being a constant.
2Bai (2013) actually considers a model involving both the individual- and time- specific effects. However,

taking the deviation of individual observation from the cross-section mean at time t, (yit − ȳt), removes the

time-specific effects, where ȳt = 1
N

∑N
i=1 yit. The transformed model no longer involves time-specific effects. The

asymptotic distributions for Bai (2013) model or (2.1) are identical. So for ease of exposition, we just consider

(2.1).
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where θ =
(
ρ, σ2η, σ

2
u

)′
, ΣN (θ) = Γ

(
σ2uIT +

(
σ2η + ρ 1N

∑N
i=1 y

2
i0

)
1T 1′T

)
Γ′ and SN = 1

N

∑N
i=1 (yi − ȳ) (yi − ȳ)′

with ȳ = 1
N

∑N
i=1 yi,

3

ΓT×T =



1 0 0 · · · 0

ρ 1 0 · · · 0

ρ2 ρ 1
. . .

...
...

...
. . . . . . 0

ρT−1 ρT−2 · · · ρ 1


.

The difference between (2.6) and (2.3) is in the way of how the likelihood function f (yi) is

written. There is not any fundamental difference between the QMLE and factor estimator. To

see this, note that by continuous substitution,

yit = ρtyi0 +
1− ρt
1− ρ ηi +

t−1∑
j=0

ρjui,t−j . (2.7)

Thus,

yi = Γe1yi0ρ+ Γ1T ηi + Γui, i = 1, 2, . . . , N, (2.8)

where e1 = (1, 0, . . . , 0)′ is a T ×1 vector. Under the assumption that ηi and uit are i.i.d over i,

and plimN→∞ 1
N

∑N
i=1 y

2
i0 converges to a constant, the logarithm of the quasi-likelihood function

divided by N takes the form (2.6).

We note that premultiplying (2.8) by the T × T matrix Λ

Λ =



1 0 0 · · · 0

−ρ 1 0 · · · 0

0 −ρ 1
. . .

...
...

...
. . . . . . 0

0 0 · · · −ρ 1


, (2.9)

yields (2.2) and the quasi-likelihood function (2.3). In other words, the QMLE and factor

estimator are different ways of obtaining the QMLE, not two different estimators based on

different assumptions or inference procedures. So for ease of reference, we shall call the QMLE

treating initial value fixed either the naive GLS or the Bai (2013) factor estimator.

Under the assumption that yi0 = 0 for all i, Bai (2013, Supplement) shows that the factor

estimator (2.5) is fixed-T consistent. However, if yi0 6= 0 and plimN→∞
1
N

∑N
i=1 yi0ηi 6= 0,

3For simplicity of exposition, we do not include an intercept term in (2.1). Thus, under our framework, SN
should be just 1

N

∑N
i=1 yiy

′
i.
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Lemma 2.1 Under assumptions A1(a) and A2, the Bai (2013) factor estimator (or naive GLS)

(2.5) for model (2.1) is inconsistent when T is fixed and N →∞. It is consistent when T →∞.
Furthermore, if uit and ηi are normally distributed or E |uit|4+ε < ∞ and E |ηi|4+ε < ∞ for

some ε > 0, when (N,T )→∞,

√
NT

(
ρ̂QMLE,f − ρ−

1

T 2
d

)
→d N

(
0, 1− ρ2

)
, (2.10)

where d = 1
(1−ρ)σ2η

plimN→∞ 1
N

∑N
i=1 yi0ηi. If the process has been going on for a long time, then

d = 1
(1−ρ)2 .

Remark 2.2 Lemma 2.1 says if NT → a <∞ as (N,T )→∞, the QMLE or naive GLS treating
initial observations as fixed constants is asymptotically unbiased. However, if N

T 3
→ c 6= 0 as

T → ∞, the naive GLS is asymptotically biased and the bias is of order
√

N
T 3
. Monte Carlo

studies conducted by Hsiao and Zhang (2015) and Hsiao and Zhou (2015) show that valid

statistical inference depends critically on the use of asymptotically unbiased estimators.

Remark 2.3 Treating ηi and yi0 as fixed constants, the QMLE is the within estimator. The

within estimator is inconsistent if T is finite. It is consistent when T →∞. However, Hahn and
Kuersteiner (2002) show that when (N,T )→∞ and N

T → a 6= 0 <∞, the within estimator is
asymptotically biased and bias is of order

√
a.

Remark 2.4 The reason that the factor estimator (2.5) is asymptotically unbiased when N
T →

a 6= 0 < ∞ while the within estimator remains biased of order
√
a is because the former treats

ηi as random that allows the cancellation of correlations due to 1
N

∑N
i=1 y′i,−1V

−1ui with part

of the correlations due to 1
N

∑N
i=1 y′i,−1V

−11T ηi (e.g., Appendix, equations (A.3) and (A.4)),

while the within transformation removes ηi from the transformed equation and there is no term

to cancel the bias due to 1
N

∑N
i=1 y′i,−11T 1′Tui.

2.3 Random Initial Observations

The starting date of collecting data is arbitrary. There is no reason to assume the data generat-

ing process of yi0 to be different from that of yit. Under the assumption that the data generating

process of yi0 is the same as that of yit,

yi0 = yi,−1ρ+ ηi + ui0 =
1

1− ρηi +
∞∑
j=0

ρjui,−j .

Then E (yi0vit) 6= 0 for all vit = ηi+uit, t = 1, . . . , T. Rewrite yi0 in the form
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yi0 = µ+ vi0, (2.11)

where vi0 = 1
1−ρηi +

∑∞
j=0 ρ

jui,−j . Under assumptions A1(a) and A2, we have E (vi0) = 0 and

E
(
v2i0
)

= σ20 and E (vi0vit) = σ21

(
= 1

1−ρσ
2
η

)
.

Combining (2.11) and (2.2) yields a system of (T + 1) equations

yi0 = µ+ vi0,

yi = ρyi,−1 + ηi1T + ui, i = 1, . . . , N, (2.12)

with variance-covariance matrix

V̆ =

(
σ20 σ211

′
T

σ211T V

)
, (2.13)

where V is defined in (2.4).

The quasi-log-likelihood function of the system (yi0,yi) takes the form

logL = −N
2

log
∣∣∣V̆∣∣∣− 1

2

N∑
i=1

(
yi0 − µ

yi − ρyi,−1

)′
V̆−1

(
yi0 − µ

yi − ρyi,−1

)
. (2.14)

Conditional on V̆, the QMLE is the GLS of ρ

ρ̂QMLE,r =

(
N∑
i=1

y′i,−1C
−1yi,−1

)−1( N∑
i=1

y′i,−1C
−1yi −

N∑
i=1

(yi0 − µ)σ−20 σ211
′
TC−1yi,−1

)
,

(2.15)

where QMLE,r refers to QMLE treating yi0 as a random variable, C = IT + σ̃2η1T 1′T with

σ̃2η = σ2η − σ41σ−20 .

Lemma 2.2 Under assumptions A1(a) and A2, and if yi0 is treated as a random variable,

when N → ∞, the QMLE estimator (2.15) for model (2.1) is consistent either T is fixed or

T →∞ and √
NT

(
ρ̂QMLE,r − ρ

)
→d N

(
0, 1− ρ2

)
. (2.16)

Remark 2.5 In the supplement material of Bai (2013), Bai assumes yi0 = δ0 + φηi + ui0,

which is similar to (2.11). Rewrite the system (2.12) in the form,(
yi0

yi

)
=

(
1

ρΓe1

)
δ0 +

(
φ

ρΓe1φ+ Γ1T

)
ηi +

(
1 0

ρΓe1 Γ

)(
ui0

ui

)
. (2.17)

7



Premultiplying (2.17) by the (T + 1)× (T + 1) matrix

Λ̃ =

(
1 01×T

0T×1 Λ

)
,

yields the system (2.12) and the quasi-likelihood function similar in the form to that of (2.14),

where Λ is given by (2.9). In other words, the GLS of (2.12) is identical to the Bai (2013)

factor estimator when yi0 are treated as random variables.

3 Panel Dynamic Models with Exogenous Explanatory Vari-

ables

We consider a dynamic model of the form

yit = ρyit−1 + xitβ + ηi + uit, i = 1, . . . , N ; t = 1, . . . , T, (3.1)

where yi0 is observable, xit is stationary and is strictly exogenous with respect to uit, and

plim(N,T )→∞
1
NT

∑N
i=1

∑T
t=1 x

2
it is a nonzero constant, or nonsingular constant matrix if xit is

multidimension.

3.1 Fixed Initial Conditions

Let xi = (xi1, . . . , xiT )′ and Zi = (yi,−1,xi) . Treating yi0 as fixed constants, the analogous

estimator of (2.5) now becomes(
ρ̂nGLS

β̂nGLS

)
=

(
N∑
i=1

Z′iV
−1Zi

)−1( N∑
i=1

Z′iV
−1yi

)
, (3.2)

where V is defined in (2.4).

Lemma 3.1 Under assumption A1(a), A2 and E (xitηi) = 0, the naive GLS (3.2) for ρ and β

is inconsistent if T is fixed and N → ∞. When (N,T ) → ∞, the naive GLS is consistent and
is asymptotically unbiased if NT → a <∞. However, it is asymptotically biased of order

√
N
T 3
if

N
T 3
→ c 6= 0 <∞.

It is often argued that the individual-specific effects ηi could be correlated with xit, namely,

E (xitηi) 6= 0. Then

Lemma 3.2 Under assumption A1(a), A2, and the assumption that plimN→∞ 1
N

∑N
i=1 x̄iηi =

ς 6= 0 where x̄i = 1
T

∑T
t=1 xit, the naive GLS, (3.2), for ρ and β is inconsistent if T is fixed and

N → ∞. When T → ∞, it is consistent. However, when (N,T ) → ∞ and N
T → a 6= 0 < ∞,

the naive GLS is asymptotically biased of order
√

N
T .
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3.2 Random Initial Observations

If the data generating process of yi0 is no different from that of yit for t ≥ 1. By continuous

substitution of (3.1), it can be shown that yi0 is not only a function of ηi, but also past xi,−j
and ui,−j (j ≥ 0) ,

yi0 =
1

1− ρηi + β

∞∑
j=0

ρjxi,−j +

∞∑
j=0

ρjui,−j

= θi0 +
1

1− ρηi +
∞∑
j=0

ρjui,−j , (3.3)

where θi0 = β
∑∞

j=0 ρ
jxi,−j that varies with i. Bhargava and Sargan (1983) propose to eliminate

the incidental parameters, θi0, through

θi0 = E (θi0|xi) + wi = x̃′ib + wi, i = 1, . . . , N, (3.4)

where x̃i = (1,x′i)
′ .

Remark 3.1 For b to be constant across i, the data generating process of xi is stationary

and homogeneous across i (Hsiao and Zhou (2015)), otherwise, E (θi0|xi) = x̃′ibi. Issues of

incidental parameters will arise.

Substituting (3.4) into (3.3), we have

yi0 = x̃′ib + vi0, (3.5)

where vi0 is now wi+ 1
1−ρηi+

∑∞
j=0 ρ

jui,−j . Combining (3.5) with the vector form of (3.1) yields

a system of (T + 1) equations(
yi0

yi

)
=

(
x̃′i 0

0 Zi

)(
b

δ

)
+

(
vi0

vi

)
, (3.6)

where vi = 1T ηi + ui. The error term ṽi = (vi0, ṽ
′
i)
′ is i.i.d over i with variance-covariance

matrix of the form

Ṽ =

(
σ20 σ2τ1′T
σ2τ1T V

)
, (3.7)

where σ20 = V ar (vi0) , σ
2
τ = Cov (vi0, vit) , and V is defined in (2.4).

Conditional on Ṽ, the QMLE of the system (3.6) is the GLS,(
b̂GLS

δ̂GLS

)
=

(
N∑
i=1

Z̃′iṼ
−1Z̃i

)−1 N∑
i=1

Z̃′iṼ
−1ỹi, (3.8)
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where ỹi = (yi0,y
′
i)
′ and Z̃i =

(
x̃′i 0

0 Zi

)
.

Lemma 3.3 When N →∞, under the assumption A1(a) and A2, the GLS estimator (3.8):
(i) is consistent and asymptotically unbiased whether T is fixed or goes to infinity if E (xitηi) =

0 (following the convention we shall call model (3.1) under E (xitηi) = 0 the random effects

model);

(ii) is inconsistent if T is fixed when E (xitηi) 6= 0 (we shall call model (3.1) under E (xitηi) 6=
0 the fixed effects model). If T → ∞ and N

T → a 6= 0 < ∞, it is consistent, however, it is as-
ymptotically biased of order

√
a.

4 Chamberlain-Mundlak Approach

When ηi are correlated with xit, treating ηi as fixed constants introduces an incidental parameter

issue. Mundlak (1978) has suggested to use the conditional mean of ηi conditional on the

ith individual’s time series average of observed explanatory variables, x̄i = 1
T

∑T
t=1 xit, and

Chamberlain (1980) has suggested to use the conditional mean of ηi conditional on the observed

explanatory variables xi = (xi1, . . . , xiT )′ in place of ηi to get around the issue of incidental

parameters. This approach has been very popular in both theoretical and empirical analysis

(e.g., Abowd et al (1999), Bai (2013), and Islam (1995)). We consider the asymptotic properties

of the QMLE under this formulation.

Let x̃i = (1, x̄i)
′ if one follows the Mundlak (1978) formulation or x̃i = (1, xi1, . . . , xiT )′ =

(1,x′i)
′ if one follows the Chamberlain (1980) approach. Then4

ηi = E (ηi|x̃i) + w∗i

= x̃′ib
∗ + w∗i , (4.1)

where b∗ = (µ, b∗1)
′ if x̃i = (1, x̄i)

′ or b∗ = (µ, b∗1, . . . , b
∗
T )′ if x̃i = (1,x′i)

′ .

Remark 4.1 For (4.1) to hold, the data generating process for xi is stationary and homo-

geneous across i (Hsiao et al (2002)). If xi are generated from heterogenous process, then

E (ηi|x̃i) = x̃′ib
∗
i , issues of incidental parameters will still arise even with the Chamberlain

(1980) or Mundlak (1978) approach.

4Note that if the data generating process is nonlinear, then (4.1) should be treated as a linear projection. The

asymptotic properties of the estimator to be discussed remain holding as long as b∗ is constant across i and w∗i
is uncorrelated with xi.
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Substituting (4.1) back to (3.1) yields

yit = ρyi,t−1 + xitβ + x̃′ib
∗ + w∗i + uit, i = 1, . . . , N ; t = 1, . . . , T, (4.2)

which can be rewritten in vector form as

yi = yi,−1ρ+ xiβ + 1T x̃′ib
∗ + w∗i 1T + ui

= Ziδ + 1T x̃′ib
∗ + w∗i 1T + ui

=
[
Zi, 1T x̃′i

]
θ + w∗i 1T + ui, (4.3)

where Zi = (yi,−1,xi) , δ = (ρ, β)′ and θ = (ρ, β,b∗′)′ .

Under the assumption that w∗i is independent of xi and i.i.d over i with mean 0 and variance

σ2w∗ , the variance-covariance matrix of (w
∗
i 1T + ui) takes the form,

V̄ = E
[
(w∗i 1T + ui) (w∗i 1T + ui)

′]
= σ2uIT + σ2w∗1T 1′T . (4.4)

then

V̄−1 = σ−2u

(
IT −

σ2w∗σ
−2
u

1 + Tσ2w∗σ
−2
u

1T 1′T

)
.

4.1 Fixed Initial Observations

Treating initial values yi0 as fixed constants, the naive generalized least squares estimator of

(4.3) takes the form

θ̂nGLS =

[
N∑
i=1

(
Z′i

x̃i1
′
T

)
V̄−1

(
Zi, 1T x̃′i

)]−1 [ N∑
i=1

(
Z′i

x̃i1
′
T

)
V̄−1yi

]
. (4.5)

For this naive GLS θ̂nGLS , including the δ̂nGLS =
(
ρ̂nGLS , β̂nGLS

)
, we have

Lemma 4.1 Under assumption A1(a), A2 and (4.1), the naive GLS (4.5) is inconsistent if

T is fixed and N → ∞. When (N,T ) → ∞ and N
T → a 6= 0 < ∞, it is consistent and

asymptotically normally distributed with mean zero. However, if N tends to infinity faster than

T so N
T 3
→ c 6= 0 <∞, (4.5) is asymptotically biased of order

√
c.

4.2 Random Initial Observations

Combining (3.5) for the initial distribution yi0 and the vector form of (4.2), we have a system of

(T + 1) equations. The (T + 1)×(T + 1) covariance matrix of this system takes the form

Ω =

(
σ20 σ2τ1′T
σ2τ1T σ2uIT + σ2w∗1T 1′T

)
. (4.6)
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Conditional on σ20, σ
2
τ and σ

2
w∗ , the QMLE of the complete system (yi0,yi|xi) takes the

form of ̂̃
θGLS =

[
N∑
i=1

Z∗′i Ω−1Z∗i

]−1 [ N∑
i=1

Z∗′i Ω−1ỹi

]
. (4.7)

where θ̃ =
(
b′,b∗′, δ′

)′
,

Z∗i =

(
x̃′i 0 0

0 1Txi Zi

)
. (4.8)

The QMLE (4.7) is asymptotically unbiased when N →∞ whether T is fixed or goes to infinity.

Conditional on yi0 and xi, the system of (yi|yi0,xi) , i = 1, . . . , N, is of the form

yi = yi,−1ρ+ xiβ + 1T x̃′ib̃
∗ + 1T yi0γ + v∗i , i = 1, . . . , N, (4.9)

where b̃∗ = γb + b∗ and γ = −σ2τ
σ20
.

The covariance matrix of (4.9) is

E
(
v∗i v

∗′
i

)
= σ2uIT + σ2w1T 1′T = V∗, (4.10)

where for notational ease, we now use σ2w to indicate
(
σ2w∗ −

σ4τ
σ20

)
.

The GLS of (4.9) now takes the form
δ̂Ĉ̃
b
∗
C

γ̂

 =

 N∑
i=1


Z′i

x̃i1
′
T

yi01
′
T

V∗−1
(
Z′i, 1T x̃′i, 1T yi0

)
−1  N∑

i=1


Z′i

x̃i1
′
T

yi01
′
T

V∗−1yi

 . (4.11)

The GLS of δ, δ̂C , for (4.11) has essentially the same form as (4.5). Thus,

Lemma 4.2 Under assumption A1(a), A2, (4.1) and (3.5), both the unconditional GLS (4.7)

and the conditional GLS (4.11) are consistent and asymptotically unbiased when N → ∞
whether T is fixed or goes to infinity.

Remark 4.2 The difference between δ̂C and δ̂nGLS is that δ̂C is based on the conditional distri-

bution of (yi|yi0,xi) while δ̂nGLS is derived from the distribution of (yi|xi) assuming E (yi0ηi) =

0. If E (yi0ηi) 6= 0, there is a bias term due to this. On the other hand, δ̂C is also conditional on

yi0, so plimN→∞ 1
N

∑N
i=1 yi0v

∗
it = 0, while for the system (4.3) plimN→∞ 1

N

∑N
i=1 yi0 (w∗i + uit) 6=

0. In other words, the conditional GLS estimator is asymptotically unbiased when N → ∞ in-

dependent of the size of T.
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Remark 4.3 The system (4.9) is identical to the system of Phillip (2010, 2015) based on

the control function approach. However, the derivation of the conditional system (4.9) shows

that for the control function approach to avoid incidental parameters issue, the data generating

process of xi has to be homogeneous across i.

Remark 4.4 In some applications, one takes the approach of conditioning on yi0 to take count

the endogeneity of yi0. This is fine if the model is a time series model like (2.1). However, if

the dynamic model also contains exogenous regressors like (3.1), conditioning on yi0 alone, but

not also on x̃i (eq (3.5)), cannot remove the asymptotic bias, even under the assumption that

xi are independent of ηi. As a matter of fact, if T is fixed, the resulting estimator is biased of

order 1
T no matter how large N is. If NT → a 6= 0 <∞ as T →∞, the estimator is consistent,

but is asymptotically biased of order
√

N
T .

For ease of notation, we assume xit and ηi are independent. We note that from (3.3),

yi0 =
1

1− ρηi + v∗i0, (4.12)

where v∗i0 = µ + β
∑∞

j=0 ρ
jxi,−j +

∑∞
j=0 ρ

jui,−j = θi0 + vi0. Combining (3.1) and (4.12) yields

a system, (
yi0

yi

)
=

(
0

yi,−1

)
ρ+

(
0

xi

)
β +

(
1
1−ρ
1T

)
ηi +

(
v∗i0
ui

)

=

(
0

Zi

)
δ +

(
1
1−ρηi + v∗i0

1T ηi + ui

)
, i = 1, . . . , N. (4.13)

Thus, the conditional system of yi conditional on yi0 takes the form,

yi = Ziδ + 1T yi0γ + ṽ∗i , i = 1, . . . , N, (4.14)

where ṽ∗i = ui+

{(
1− σ2η

(1−ρ)2σ2
0∗

)
ηi −

σ2η
(1−ρ)σ2

0∗
v∗i0

}
1T and σ20∗ = V ar

(
1
1−ρηi + v∗i0

)
= V ar

(
1
1−ρηi + vi0

)
.

The GLS of (4.14) takes the form of(
δ̂
∗
C

γ̂∗C

)
=

[
N∑
i=1

(
Z′i
yi01

′
T

)
Ṽ∗−1 (Zi, 1T yi0)

]−1 [ N∑
i=1

(
Z′i
yi01

′
T

)
Ṽ∗−1yi

]
, (4.15)

where

Ṽ∗ = Cov (v∗i ) = IT + σ2w̃1T 1′T , (4.16)

where for notational ease we let σ2w̃ = σ2η

(
1− σ2η

(1−ρ)2σ2
0∗

)
.
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Lemma 4.3 The system (4.14) is the conditional system of (4.13), conditional on yi0. The

resulting estimator (4.15) is inconsistent if T is fixed because E (v∗i0) 6= 0 under (3.4)

δ̂
∗
C = δ +Op

(
1

T

)
. (4.17)

In other words, if T is fixed, conditional on yi0 alone cannot yield a consistent estimator no

matter how large N is. The bias is of order 1
T . If T → ∞, δ̂

∗
C is consistent. However, if

N
T → a 6= 0 <∞ as T →∞, δ̂∗C is asymptotically biased of order

√
N
T .

Remark 4.5 The difference between (4.9) and (4.14) is that the former is a legitimate con-

ditional system whether E (xitηi) = 0 or not, while the latter is not a legitimate system even

under E (xitηi) = 0.

Remark 4.6 When E (xitηi) = 0, treating yi0 as fixed constants, the naive GLS is asymptot-

ically biased of order
√

N
T 3
. On the other hand, conditional on yi0 ignoring the fact that yi0 is

also a function of past xi,−s (s ≥ 0) yields an estimator that is asymptotically biased of order√
N
T , worse than treating initial value yi0 as fixed constants (order of

√
N
T 3
). The reason is

that treating yi0 as a fixed constant, the system (3.1) of T equations has the initial value, yi0,

appearing only in the yi1 equation. The other (T − 1) yit equation does not contain yi0 as a

regressor. As T goes to infinity, the error of ignoring the correlation between yi0 and ηi becomes

increasingly negligible. On the other hand, the conditional system (4.14) has each yit equation

containing yi0 as a regressor, yet E (yi0v
∗
it) 6= 0 for t = 1, . . . , T.

Remark 4.7 Arellano and Bond (1990) suggest to take the generalized method of moments

(GMM) approach to estimate the unknown parameters. The advantages of GMM are (i) there

is no need to consider if xit are correlated with ηi, and (ii) there is no need to consider the initial

value distribution. When N →∞, the GMM is asymptotically unbiased when T is fixed. How-

ever, if (N,T )→∞, Alvarez and Arellano (2003) show that the GMM is asymptotically biased

of order
√

T
N . If an estimator is asymptotically biased, there could be significant size distortion

(see, for example, Hsiao and Zhang (2015) or Hsiao and Zhou (2015, 2017)).

5 Model with Heteroscedastic Errors

Although the above results are based on homoscedastic errors (Assumption A1(a)), we show in

this section that the statistical properties with regard to the consistency and order of asymptotic

bias for model (2.1) with fixed or random initial conditions remain valid with the heteroscedastic

errors, uit,
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Assumption A1(b): The errors uit are independent of ηi and are independently distributed

over i and t with mean zero and constant variance σ2ui, where 0 < σ2ui <∞ for all i = 1, . . . , N,

and 1
N

∑N
i=1 σ

2
ui = σ̄2u <∞.

For model (2.1), the analogues estimator of (2.5) now takes the form

ρ̂heter,f =

(
N∑
i=1

y′i,−1V
−1
i yi,−1

)−1( N∑
i=1

y′i,−1V
−1
i yi

)
, (5.1)

where heter,f refers to heteroscedastic errors and yi0 is treated as fixed constant, yi,−1 and yi

are defined before and

Vi = σ2uiIT + σ2η1T 1′T , V−1i = σ−2ui

(
IT −

κi
1 + Tκi

1T 1′T

)
. (5.2)

where κi =
σ2η
σ2ui
.

Similarly, the unconditional system (2.12) now has the variance-covariance matrix V̆i, where

V̆i =

(
σ20i σ211

′
T

σ211T Vi

)
, (5.3)

where σ21 is the same as before and σ
2
0i = V ar (yi0) , Vi = σ2uiIT + σ2η1T 1′T .

Thus, the analogues estimator of (2.15) is

ρ̂heter,r =

(
N∑
i=1

y′i,−1C
−1
i yi,−1

)−1( N∑
i=1

y′i,−1C
−1
i yi −

N∑
i=1

(yi0 − µ)σ−20i σ
2
11
′
TC−1i yi,−1

)
, (5.4)

where heter,r refers to heteroscedastic errors and yi0 is treated as a random variable, and Ci =

σ2uiIT + σ̃2ηi1T 1′T with σ̃
2
ηi = σ2η − σ41σ−20i .

The asymptotics of the GLS estimators (5.1) and (5.4) are summarized in the following

lemma.

Lemma 5.1 Under assumption A1(b), A2, when N →∞, the naive GLS estimator (5.1) is as-
ymptotically biased of order

√
N
T 3
as (N,T )→∞, but the GLS estimator (5.4) is asymptotically

unbiased whether T is fixed for goes to infinity.

Remark 5.1 The above lemma states that whether the idiosyncratic errors uit is heteroscedas-

tic doesn’t affect the asymptotic properties of the QMLE when treating yi0 as fixed constant or

random variable. This result can also be generalized to model with exogenous variables.
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Remark 5.2 Similarly, the consistency and the order of asymptotic bias for the system (3.1)

with fixed or random initial conditions remain valid with time heteroscedasticity. Suppose uit
is independently distributed over t with variance σ2t and limT→∞

1
T

∑T
t=1 σ

2
t = σ̄2 < ∞. The

NT ×NT covariance matrix of v = (v′1,v
′
2, . . . .v

′
N )′ has the form of

E
(
vv′
)

= IN ⊗Ψ + IN ⊗ σ2η1T 1′T = IN ⊗
(
Ψ + σ2η1T 1′T

)
,

where Ψ = diag
(
σ21, . . . , σ

2
T

)
and ⊗ denotes the Kronecker product. Similar, but more laborious

manipulations, show that the order of asymptotic bias is the same as the homoscedastic case5.

6 Monte Carlo Simulation

In this section, we investigate the finite sample properties for the estimator conditioning on

the initial values being fixed (Bai (2013) factor estimator) or random (conditional GLS and

the unconditional GLS) for dynamic panel model. We consider the following data generating

processes.

DGP1: Panel time series model

yit = ηi + ρyit−1 + uit. (6.1)

DGP2: Dynamic panel with exogenous variables

yit = ηi + ρyit−1 + xitβ + uit, (6.2)

where the exogenous variables xit are generated as

xit = 0.5xi,t−1 + 0.4ηi + vit,

where vit ∼ IIDχ2 (1) for all i and t.

DGP3: Random effects dynamic model with the same DGP of (6.2), but xit are generated

as

xit = 0.5xi,t−1 + vit, (6.3)

where vit ∼ IIDχ2 (1) for all i and t.

For these three DGPs, we assume that ηi ∼ IIDN (0, 1) for all i. For the values of ρ and β,

we let ρ0 = 0.5 and β = 1.6 We also let T = 10, 100, 200 and N = 100, 200, 500. We generate

T + 100 observations, and the first 100 observations are discarded.
5The derivation for the asymptotic properties of the naive GLS (2.5) when uit is time series heteroscedastic

is avaiable upon request.
6To save the space, here we only report the simulation results for ρ0 = 0.5. Additional simulation results for

ρ0 = 0.2 and 0.8 are presented in the Appendix.
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In order to examine the finite sample performance of the QMLE or GLS, we generate the

idiosyncratic errors as homoscedastic or heteroscedastic as follows:

Case 1: Homoscedasitic errors

We generate uit ∼ IIDN (0, 1) for all i, t.

Case 2: Heteroscedasitic errors

We generate uit ∼ IIDN
(
0, σ2i

)
for all i, t, where σ2i is iid draw from 0.5

(
1 + 0.5χ2 (2)

)
for

all i, with χ2 (2) being the Chi-squared distribution variable with degree of freedom of 2.

For DGP (6.1), we consider the factor estimator or naive GLS (2.5), and the conditional

GLS conditional on yi0 − µ only (formula (4.11) with xi = 0).

The DGP (6.2), E (xitηi) 6= 0, and DGP (6.3), E (xitηi) = 0, we consider estimator (3.2),

(4.5), (4.7) (4.11) and (4.15).7 For comparison, we also consider Arellano-Bond type GMM

estimation (e.g., Arellano and Bond (1990)) for DGP (6.1)-(6.3). The number of replication is

set at 1000 times. Simulation results are summarized in Table 1-3 for homoscedastic errors and

Table 4-6 for heteroscedastic errors.

The GLS or conditional GLS requires the knowledge of σ2u and σ
2
η or σ

2
w.We obtain initial es-

timators for σ2u and σ
2
w (or σ

2
η) first using Anderson and Hsiao (1981, 1982) simple instrumental

variable estimator of ρ and β (β = 0 for DGP1) to obtain

êit = ∆yit − ρ̂∆yit−1 − β̂∆xit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (6.4)

then estimate σ2u by

σ̂2u =
1

2N (T − 1)

N∑
i=1

T∑
t=1

ê2it. (6.5)

To obtain initial estimator for σ2w, we also need initial estimator of γ and a, which can be

estimated by (
γ̂̂̃a∗
)

=

[
N∑
i=1

(
y2i0 yi0x̃

′
i

yi0x̃i x̃ix̃
′
i

)]−1 [ N∑
i=1

(
yi0

x̃i

)
1

T

T∑
t=1

êit

]
, (6.6)

where êit is defined in (6.4). Then calculate the residuals

ēi =
1

T

T∑
t=1

(
yit − ρ̂yit−1 − β̂xit − γ̂yi0 − x̃′î̃a∗) , (6.7)

and

σ̂2w =
1

N

N∑
i=1

ē2i −
σ̂2u
T
. (6.8)

7GLS estimators (4.7) and (4.11) performs quite similar to each other. So we only display simulation results

for GLS estimator (4.7). Estimation reults of GLS estimator (4.11) are avaiable upon request.
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However, the two step procedure of estimating σ̂2w could yield negative value. In the event

that an estimator σ̂2w < 0, we let σ̂2w = 0 in estimating Ṽ.

Tables 1 and 2 summarize the bias, root mean squared error (RMSE) and actual size based

on the critical value of 1.96 for ρ = 0.5 for different combination of N (100, 200, 500) and T

(10, 100, 500) when the idiosyncratic errors are homoscedastic and heteroscedastic for DGP1,

respectively. As expected, when N and T are of similar magnitude, the Bai (2013) factor

estimator or naive GLS has negligible bias and the actual size is close to the nominal value

of 5%. However, if N is much larger than T, then there is significant size distortion and the

distortion increases with the value of ρ. For instance, for N = 100, T = 10, the actual size is

38.5% for ρ = 0.5 (9.1% for ρ = 0.2 and 100% when ρ = 0.8 in the Table A1 and A2).Moreover,

the size distortion increases with the ratio N/T.When N = 500 and T = 10, the actual size for

nominal value 5% significance level is 36.2% when ρ = 0.5 (24.7% for ρ = 0.2 and 100% when

ρ = 0.8 in the Table A1 and A2). On the other hand, the conditional GLS estimator conditional

yi0 − µ, is indeed asymptotically unbiased, and the actual size is close to the nominal size for
whatever combination of N and T and for whatever value of ρ. Furthermore, the bias and root

mean square error (RMSE) of the conditional GLS are substantially smaller than the estimator

treating initial values as fixed constants. Also, similar findings can be observed in Table 4 when

the idiosyncratic errors are heteroscedastic. For the GMM estimation, it is obvious that GMM

is asymptotically biased of order T
N , the bias is quite significant when N is relatively small, and

the size distortion is quite significant if the ratio of TN is large.

Tables 3-4 summarize the results for the different estimators for DGP2 (fixed effects model)

when x̃i = (1, x̄i)
′ for homoscedastic and heteroscedastic errors, respectively. As expected,

ignoring the correlation between the individual effects and regressors lead to significant bias

and size distortion for the factor estimator (3.2). However, even with the Mundlak-Chamberlain

approach of correction of the correlations between the individual effects and regressors, it could

still lead to significant size distortion when N is much larger than T if initial values are treated

as fixed constants (GLS (4.5)). The distortion increases with the ratio N
T and the absolute

value of ρ. For instance, for a nominal significant level 5% test, when T = 10, and N = 200, the

actual size is 22.7% when ρ = 0.5. When T = 10, and N = 500, the size distortion increases to

40% when ρ = 0.5. The size distortion will disappear only if N and T are of similar magnitude.

On the other hand, the feasible unconditional GLS or feasible conditional GLS (GLS (4.7) and

(4.11)) have the empirical size close to the nominal size for whatever combination of N and T.

Moreover, they have smaller bias and RMSE than the estimator treating initial values as fixed

constants. Tables 3-4 also show that although yi0 are treated as random but conditional on

yi0 alone to take account the randomness of yi0 can also yield significant size distortion if N
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is much larger than T. While for the GMM estimator, it is still asymptotically biased, but the

size distortion is quite small.

Tables 5-6 summarize the results for the different estimators for DGP3 (random effects

model) or homoscedastic and heteroscedastic errors, respectively. When the individual effects

and regressors are uncorrelated, b̃ = 0. The size distortion of the factor estimator are of similar

magnitude to the pure time series model (DGP1) when N is much larger than T. There will

be no size distortion only when N and T are of similar magnitude. However, implementing the

unneeded Munlak-Chamberlain adjustment (GLS (4.5)) further increases the size distortion. On

the other hand, the performance of unconditional and conditional feasible GLS is not affected

by implementing the unneeded Mundlak-Chamberlain adjustment (GLS (4.7) and (4.11)). The

actual size is close to nominal size for whatever combination of N and T. The GMM estimation

performs similarly to DGP 2 and still is still asymptotically biased.

Table 7 summarizes the results of naive GLS and conditional or unconditional GLS for

DGP2 following the Chamberlain (1980) approach of considering the individual effects or initial

observations on all observed regressors x̃i = (1,x′i)
′ when N and T are of similar magnitude.

As one can see if N = T, then using the Chamberlain approach can still lead to significant size

distortion due to bad approximation of the variance of (ηi − E (ηixi) using the Chamberlain

approach when T greater than or equal to N . On the other hand, if N > T, using either the

Chamberlain approach or Mundlak approach can lead to asymptotically unbiased inference.

However, the Mundlak (1978) approach yields smaller bias and RMSE. This suggests that

perhaps empirically one should just use the time series average x̄i instead of xi to condition ηi
or yi0.8

7 Concluding Remarks

Whether an estimator is asymptotically biased or not plays a crucial role in obtaining valid

statistical inference as shown in our simulations as well as those of Hsiao and Zhang (2015),

Hsiao and Zhou (2015). For a dynamic panel data model, in addition to the issue of fixed

vs random effects specification, there is also an issue of whether the initial values should be

treated as fixed constants or random variables. Because many dynamic panel data estimators

can be viewed as the quasi-maximum likelihood estimator (QMLE) under different initial value

assumptions, we take a quasi-likelihood approach to illustrate the sensitivity of valid statistical

inference to the initial value distribution assumptions and cross-sectional dimension N and the

8This result is based on the model is correctly specified. If a model is misspecified, the Chamberlain approach

may perform better.

19



time series dimension T. When N is fixed and T is large, it does not matter whether the initial

values are treated as fixed constants or random variables. When N is large, how the initial

values are treated becomes very important. Treating initial values as fixed constants, the QMLE

is inconsistent if T is fixed and N → ∞. When both N and T are large, it is consistent but

asymptotically biased of order
√

N
T 3
for a panel time series model whether the individual-specific

effects are fixed or random or a general dynamic panel model containing strictly exogenous

explanatory variables when the effects are random and independent of the explanatory variables.

However, if the effects are correlated with the included exogenous variables, the estimator (3.2) is

asymptotically biased of order
√

N
T as (N,T )→∞. Using the the Chamberlain (1980)-Mundlak

(1978) approach to condition the effects on observed explanatory variables can reduce the order

of asymptotic bias to
√

N
T 3
. On the other hand, the QMLE with a properly modeled initial value

distribution combined with Chamberlain-Mundlak approach is consistent and asymptotically

unbiased whether T is fixed or goes to infinity as long as N → ∞. We summarize the main
conclusions in Table 8.

There is also an important difference in formulating the initial value distribution for a pure

time series model and the model that also contains other covariates. For a pure time series

model, modeling yi0 = µ + vi0 is suffi cient. For a dynamic model containing other covariates,

then yi0 is also a function of past covariates. Conditioning on observed covariates can get around

the incidental parameters issue only if the data generating process for the covariates is homoge-

neous across i. Finally, although asymptotically there is no difference between the Chamberlain

(1980) approach of conditioning the individual effects or initial values on individual’s observed

regressors and Mundlak’s (1978) approach of simply conditioning on their time series means,

our simulation results appear to favor the Mundlak’s (1978) approach, in particular if T is not

small based on the assumption that the panel data model is correctly specified.
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Table 1: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.5 for DGP1 (6.1) and Case 1

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.7043 0.5014 0.4653 0.6976 0.5005 0.4810 0.6828 0.4990 0.4914

10 bias 0.2043 0.0014 -0.0347 0.1976 0.0005 -0.0190 0.1828 -0.0010 -0.0086

rmse 0.2501 0.0399 0.0698 0.2333 0.0274 0.0487 0.2071 0.0174 0.0296

size 38.5% 5.2% 9.1% 34.4% 5.1% 7.8% 36.2% 4.4% 7%

estim 0.5002 0.4998 0.4843 0.5001 0.4997 0.4916 0.5003 0.4999 0.4922

100 bias 0.0002 -0.0002 -0.0157 0.0001 -0.0003 -0.0084 0.0003 -0.0001 -0.0078

rmse 0.0088 0.0088 0.0182 0.0063 0.0063 0.0108 0.0042 0.0042 0.0091

size 5% 5% 41.7% 5.6% 5.5% 22.2% 6.1% 6% 40%

estim 0.4998 0.4997 0.4918 0.4999 0.4998 0.4964 0.5000 0.4999 0.4967

200 bias -0.0002 -0.0003 -0.0082 -0.0001 -0.0002 -0.0036 0.0000 -0.00001 -0.0033

rmse 0.0061 0.0062 0.0103 0.0044 0.0045 0.0057 0.0028 0.0028 0.0044

size 4.4% 4.7% 26.1% 5.2% 5.2% 12.3% 5.1% 5% 20.2%

Note: 1. "nGLS" refers to the naive GLS (2.5) treating yi0 as fixed, "GLS" refers to the naive GLS

(2.15) treating yi0 as random. "GMM" refers to the Arellano and Bond (1990) type GMM.

2. size is calculated for H0 : ρ = 0.5.

Table 2: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.5 for DGP1 (6.1) and Case 2

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.6991 0.4999 0.4585 0.6988 0.4988 0.4744 0.6893 0.4990 0.4887

10 bias 0.1991 -0.0001 -0.0415 0.1988 -0.0012 -0.0256 0.1893 -0.0010 -0.0113

rmse 0.2494 0.0435 0.0776 0.2379 0.0294 0.0548 0.2168 0.0191 0.0332

size 37.5% 5.3% 9.8% 34.2% 5.3% 8.4% 35.2% 4.7% 6.6%

estim 0.5005 0.5001 0.4843 0.5002 0.4999 0.4907 0.5004 0.5000 0.4960

100 bias 0.0005 0.0001 -0.0157 0.0002 -0.0001 -0.0093 0.0004 0.0000 -0.0040

rmse 0.0096 0.0096 0.0187 0.0071 0.0071 0.0120 0.0044 0.0045 0.0062

size 5.2% 5.1% 34% 5.1% 5.4% 24.2% 5.2% 4.9% 13.2%

estim 0.4998 0.4997 0.4918 0.5000 0.4999 0.4922 0.4998 0.4997 0.4961

200 bias -0.0002 -0.0003 -0.0082 0.0000 -0.0001 -0.0078 -0.0002 -0.0003 -0.0039

rmse 0.0067 0.0067 0.0106 0.0050 0.0050 0.0093 0.0030 0.0030 0.0050

size 5.3% 5.4% 22.8% 5.3% 5.4% 32.2% 5.2% 5.4% 22.2%
Note: size is calculated for H0 : ρ = 0.5. See note 1 of Table 1.
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Appendix

A.1 Derivation of Lemma 2.1

We first note that by substituting (2.2) into (2.5) yields

ρ̂QMLE,f − ρ =

(
N∑
i=1

y′i,−1V
−1yi,−1

)−1( N∑
i=1

y′i,−1V
−1 (ηi1T + ui)

)
. (A.1)

Making use of (2.7), we obtain

T∑
t=1

yi,t−1 =
1− ρT
1− ρ yi0 +

1

1− ρ

[
(T − 1)− ρ1− ρT−1

1− ρ

]
ηi

+

{
1− ρT−1

1− ρ ui1 +
1− ρT−2

1− ρ ui2 + · · ·+ 1− ρ2
1− ρ ui,T−2 + ui,T−1

}
. (A.2)

Following Alvarez and Arellano (2003), it can be shown that the denominator of (A.1)

divided by NT converges to 1
1−ρ2 as (N,T )→∞. When N →∞ or (N,T )→∞,

1√
NT

N∑
i=1

y′i,−1

(
IT −

σ2η
1 + Tσ2η

1T 1′T

)
1T ηi

=

√
N

T

Tσ2η(
1 + Tσ2η

)
(1− ρ)2

(T − 1)− Tρ+ ρT

T

+

√
N

T 3
T(

1 + Tσ2η
)

(1− ρ)
plimN→∞

1

N

N∑
i=1

yi0ηi + o (1) , (A.3)

and

1√
NT

N∑
i=1

y′i,−1

(
IT −

σ2η
1 + Tσ2η

1T 1′T

)
ui

=
1√
NT

N∑
i=1

T∑
t=1

yi,t−1uit −
√
N

T

Tσ2η(
1 + Tσ2η

)
(1− ρ)2

(T − 1)− Tρ+ ρT

T
. (A.4)

The second term of (A.4) cancels out with the first term of (A.3)9. The first term of the

numerator of (A.4) converges to a normal distribution under fairly general conditions (e.g., uit
and ηi are normally distributed or E |uit|4+ε < ∞ and E |ηi|4+ε < ∞ for some ε > 0, see, for

9We owe this point to the private communication with Jushan Bai.
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example, Hsiao and Zhang (2015) or Hsiao and Zhou (2016)). The first term of the numerator

of (A.3) is Op
(√

N
T 3

)
if plimN→∞

1
N

∑N
i=1 yi0ηi is a nonzero constant. Thus, if N and T are

of similar order, NT → a <∞ as Bai (2013) has assumed, the estimator (2.5) is asymptotically

unbiased. On the other hand, if N is much larger than T such that N
T 3
→ c 6= 0, the second

term of the numerator multiplied by
√
NT converges to a constant that is proportional to

√
c.

A.2 Derivation of Lemma 2.2

The inverse of variance-covariance matrix V̆ is given by

V̆−1 =

(
ω−1 −σ−20 σ211

′
TC−1

−σ−20 C−1σ211T C−1

)
, (A.5)

where

ω = σ20 − σ211′T
(
IT + σ2η1T 1′T

)−1
σ211T

= σ20 −
σ41T

1 + Tσ2η
,

and

C = IT + σ̃2η1T 1′T , with C−1 = IT −
σ̃2η

1 + T σ̃2η
1T 1′T . (A.6)

where σ̃2η = σ2η − σ41σ−20 .

Consequently, we have

√
NT

(
ρ̂QMLE,r − ρ

)
=

(
1

NT

N∑
i=1

y′i,−1C
−1yi,−1

)−1

×
(

1√
NT

N∑
i=1

y′i,−1C
−1 (ηi1T + ui)−

1√
NT

N∑
i=1

(yi0 − µ)σ−20 σ211
′
TC−1yi,−1

)
.(A.7)

We note that C and C−1 are of the same form as V and V−1, then

E
(
y′i,−1C

−1ηi1T
)

=
1

1 + T σ̃2η
E
(
y′i,−11T ηi

)
=

1

1 + T σ̃2η
E

(
T∑
t=1

yi,t−1ηi

)

=
1

1 + T σ̃2η
E

(
yi0ηi +

T−1∑
t=1

yitηi

)

=
1

1 + T σ̃2η

(
σ21 +

T−1∑
t=1

(
γtE (yi0ηi) + E

(
η2i
) 1− ρt

1− ρ

))

=
1

1 + T σ̃2η

(
1− ρT
1− ρ σ

2
1 +

σ2η
1− ρ

(
T − 1− ρ− ρT

1− ρ

))
, (A.8)

31



and

E
(
y′i,−1C

−1
i ui

)
= E

(
y′i,−1ui

)
−

σ̃2η

1 + T σ̃2η
E
(
y′i,−11T 1′Tui

)
= −

σ̃2η

1 + T σ̃2η
E

(
T∑
t=1

yi,t−1

T∑
t=1

uit

)

= −
σ̃2η

1 + T σ̃2η

(
T−1∑
t=1

E (yituit) +

T−1∑
s>t

E (yisuit)

)

= −
σ̃2η

1 + T σ̃2η

(
(T − 1) +

T−2∑
t=1

T−1∑
s=t+1

ρs−t

)

= −
σ̃2η

1 + T σ̃2η

1

1− ρ

(
T − 1− ρ− ρT

1− ρ

)
. (A.9)

Also,

E
[
(yi0 − µ)σ−20 σ211

′
TC−1i yi,−1

]
= σ−20 σ21

1

1 + T σ̃2η
E
(
vi01

′
Tyi,−1

)
= σ−20 σ21

1

1 + T σ̃2η

[
σ21

1− ρ

(
T − 1− ρ− ρT

1− ρ

)
+

1− ρT
1− ρ σ

2
0

]
(A.10)

since

E
(
vi01

′
Tyi,−1

)
= E

(
T∑
t=1

yi,t−1vi0

)
= E (yi0vi0) +

T−1∑
t=1

E (yitvi0)

= σ20 +
T−1∑
t=1

E

(
αi

1− ρt
1− ρ + ρtyi0 +

t−1∑
s=0

ρsut−s

)
vi0

= σ20 +
T−1∑
t=1

1− ρt
1− ρ σ

2
1 +

T−1∑
t=1

ρtσ20,

=
σ21

1− ρ

(
T − 1− ρ− ρT

1− ρ

)
+

1− ρT
1− ρ σ

2
0.

Combining (A.8)-(A.10), it follows that the numerator of (A.7) has expected value 0, thus

the QMLE of γ treating yi0 as random variable is asymptotically unbiased as long as N →∞.
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A.3 Derivation of Lemma 3.1 and Lemma 3.2

Rewrite (3.2) as(
ρ̂nGLS

β̂nGLS

)
=

(
N∑
i=1

Z′iV
−1Zi

)−1( N∑
i=1

Z′iV
−1yi

)

=

(
ρ

β

)
+

(
N∑
i=1

Z′iV
−1Zi

)−1( N∑
i=1

Z′iV
−1 (ηi1T + ui)

)

=

(
ρ

β

)
+

(
N∑
i=1

Z′iV
−1Zi,−1

)−1( ∑N
i=1 y′i,−1V

−1 (ηi1T + ui)∑N
i=1 x′iV

−1 (ηi1T + ui)

)
,(A.11)

where V is defined in (2.4).

For the numerator of the second term of (A.11), we have

1√
NT

N∑
i=1

x′iV
−1ηi1T =

√
N

T

T

1 + Tσ2η
plimN→∞

1

N

N∑
i=1

x̄iηi. (A.12)

Under the assumption that E (xitηi) = 0, plimN→∞
1
N

∑N
i=1 x̄iηi = 0. The limiting distribution

of 1√
NT

∑N
i=1 x′iV

−1 (ηi1T + ui) is normally distributed with mean zero. Lemma 3.1 follows

from the proof of Lemma 2.1.

When E (xitηi) 6= 0, plimN→∞
1
N

∑N
i=1 x̄iηi 6= 0, (A.12) converges to

Tς

1 + Tσ2η
= O (1) , (A.13)

where plimN→∞
1
N

∑N
i=1 x̄iηi = ς. Thus, when T → ∞, (A.11) converges to (ρ, β)′ , However,

the numerator of the last term of (A.11) divided by
√
NT reduces to(

1√
NT

∑N
i=1 y′i,−1V

−1 (ηi1T + ui)

1√
NT

∑N
i=1 x′iV

−1 (ηi1T + ui)

)

=

 1√
NT

∑N
i=1

∑T
t=1 yi,t−1uit +

√
NT

T(1+Tσ2η)
1−ρT
1−ρ plimN→∞

1
N

∑N
i=1 yi0ηi

1√
NT

∑N
i=1

∑T
t=1 xituit +

√
N
T

Tς
1+Tσ2η

+ op (1)(A.14)

Under assumptions A1(a) and A2, it can be easily verified that the terms 1√
NT

∑N
i=1

∑T
t=1 yi,t−1uit

and 1√
NT

∑N
i=1

∑T
t=1 xituit converge to normal distributions with zero means if uit and ηi are

normally distributed or E |uit|4+ε < ∞ and E |ηi|4+ε < ∞ for some ε > 0 (see, for example,

Hsiao and Zhang (2015) or Hsiao and Zhou (2016)). However, the second term in the first

element of the last vector on the right hand side of (A.14) is of order
√

N
T 3
and the second term

of the second element is of order
√

N
T . Therefore, the naive GLS for the general fixed effects

estimator is asymptotically biased of order
√

N
T as (N,T )→∞.

33



A.4 Derivation of Lemma 3.3

The proof follows that of Lemma 3.2, here we only provide the sketch of the proof. We note

that (
b̂GLS

δ̂GLS

)
−
(

b

δ

)
=

(
N∑
i=1

Z̃′iṼ
−1Z̃i

)−1 N∑
i=1

Z̃′iṼ
−1

(
vi0

1T ηi + ui

)
, (A.15)

where Ṽ−1 essentially takes the similar form as (A.5) except for few notation changes, i.e.,

Ṽ−1 =

 ω̃−1 −σ2τ
σ20

1′T C̃−1

−σ2τ
σ20

C̃−11T C̃−1

 , (A.16)

where ω̃ = σ20 −
σ4τ

1+Tσ2η
and

C̃−1 =
(
IT + σ̌2η1T 1′T

)−1
= IT −

σ̌2η
1 + T σ̌2η

1T 1′T . (A.17)

with σ̌2η = σ2η − σ4τσ−20 .

Now the numerator of (A.15) divided by
√
NT takes the form,

1√
NT

N∑
i=1

(
x̃i 0

0 Z′i

)(
ω̃−1 −σ−20 σ2τ1′T C̃−1

−σ−20 C̃−1σ2τ1T C̃−1

)(
vi0

1T ηi + ui

)

=
1√
NT

N∑
i=1

(
x̃i 0

0 Z′i

)(
ω̃−1vi0 − σ−20 σ2τ1′T C̃−1 (1T ηi + ui)

−σ−20 C̃−1σ2τ1T vi0 + C̃−1 (1T ηi + ui)

)

=

√
N

T

1

N

N∑
i=1


x̃i

[
ω̃−1vi0 − σ−20 σ2τ1′T C̃−1 (1T ηi + ui)

]
y′i,−1

[
−σ−20 C̃−1σ2τ1T vi0 + C̃−1 (1T ηi + ui)

]
x′i

[
−σ−20 C̃−1σ2τ1T vi0 + C̃−1 (1T ηi + ui)

]
 . (A.18)

For the first case when E (xitηi) = 0, we observe the expectation of the first and third

component of (A.18) is zero, and the second component also has zero mean by following the

derivation in (A.8)-(A.10). As a result, if E (xitηi) = 0, (A.18) will have zero expectation either

T is fixed or goes to infinity, i.e., the GLS estimator (3.8) is consistent and asymptotically

unbiased as long as N →∞.
For the second case when E (xitηi) 6= 0, then we can observe that the expectation of the first

and third component of (A.18) is no longer zero, and the expectation will be a finite constant

depending on E (xitηi) . If T is fixed, in view of (A.14),
1
N

∑N
i=1 Z̃′iṼ

−1

(
vi0

1T ηi + ui

)
will not

converge to zero as N →∞, and will be Op (1) , i.e., the GLS estimator (3.8) is inconsistent. If

T →∞ and N
T → a 6= 0 <∞, it is asymptotically biased of order

√
a.
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A.5 Derivation of Lemma 4.1

It follows from (4.5) that

θ̂nGLS − θ =

[
N∑
i=1

(
Z′i

x̃i1
′
T

)
V̄−1

(
Zi, 1T x̃′i

)]−1 [ N∑
i=1

(
Z′i

x̃i1
′
T

)
V̄−1 (w∗i 1T + ui)

]
, (A.19)

where the numerator on the right hand side (RHS) divided by
√
NT is

1√
NT

N∑
i=1

(
Z′i

x̃i1
′
T

)
V̄−1 (w∗i 1T + ui) =

1√
NT

N∑
i=1

(
Z′iV̄

−1 (w∗i 1T + ui)

x̃i1
′
T V̄−1 (w∗i 1T + ui)

)
, (A.20)

using the relation

V̄−11T =
1

1 + Tσ2w∗σ
−2
u

1T ,

we obtain

1√
NT

N∑
i=1

(
Z′iV̄

−1 (w∗i 1T + ui)

x̃i1
′
T V̄−1 (w∗i 1T + ui)

)
=

1√
NT

N∑
i=1


1

1+Tσ2
w∗σ

−2
u

y′i,−11Tw
∗
i + y′i,−1V̄

−1ui

1
1+Tσ2

w∗σ
−2
u

x′i1Tw
∗
i + x′iV̄

−1ui

T
1+Tσ2

w∗σ
−2
u

x̃iw
∗
i + x̃i1

′
Tui

 .

(A.21)

For model (4.2), under the projection (4.1), we have

E (x̃iw
∗
i ) = 0,

also, under the assumption of strict exogeneity of xi, we have

E
(
x′iui

)
= 0.

Thus, the second and third elements of the RHS of (A.21) have zero expectation.

For the first element of the RHS of (A.21), we first note that by continuous substitution,

model (4.2) can also be rewritten as

yit = ρtyi0 +
1− ρt
1− ρ w

∗
i +

1− ρt
1− ρ x̃′ib

∗ +

t−1∑
j=1

ρjxi,t−jβ +

t−1∑
j=0

ρjui,t−j . (A.22)

Then

1

1 + Tσ2w∗σ
−2
u

y′i,−11Tw
∗
i + y′i,−1V̄

−1ui

=
1

1 + Tσ2w∗σ
−2
u

T∑
t=1

yi,t−1w
∗
i + y′i,−1ui −

σ2w∗σ
−2
u

1 + Tσ2w∗σ
−2
u

y′i,−11T 1′Tui. (A.23)

35



The expected value of (A.23) in view of the derivation in (A.9) is equal to

E

(
1

1 + Tσ2w∗σ
−2
u

y′i,−11Tw
∗
i + y′i,−1V̄

−1ui

)

=
σ2w∗

1 + Tσ2w∗σ
−2
u

T∑
t=1

1− ρt−1
1− ρ − σ2w∗σ

−2
u

1 + Tσ2w∗σ
−2
u
E
(
y′i,−11T 1′Tui

)
=

σ2w∗

(1− ρ)
(
1 + Tσ2w∗σ

−2
u

) [(T − 1)− 1− ρT
1− ρ −

(
T − 1− ρ− ρT

1− ρ

)]
= − σ2w∗

(1− ρ)
(
1 + Tσ2w∗σ

−2
u

)
= O

(
1

T

)
.

As a result, the first term (A.19) of A.21 is of order
√

N
T 3
. Consequently, if T is fixed,

then θ̂nGLS is inconsistent. If NT → a < ∞ as T increases,
√
NT

(
δ̂nGLS − δ

)
converges to a

normally distributed variable centered at zero. However, if N tends to infinity faster than T so
N
T 3
→ c 6= 0,

√
NT

(
δ̂nGLS − δ

)
is not centered at zero, and using the Chamberlain (1980)-

Mundlak (1978) approach to get around the correlation between the effects and exogenous

variable without proper consideration of initial value distribution will still yield estimators that

are asymptotically biased of order
√
c.

A.6 Derivation of Lemma 4.2

We note (4.7) implies

̂̃
θGLS − θ̃ =

[
N∑
i=1

Z̃′iΩ
−1Z̃i

]−1 [ N∑
i=1

Z̃′iΩ
−1

(
vi0

w∗i 1T + ui

)]
, (A.24)

and Ω−1 is similar in form to (A.16).

When E (xitηi) = 0, if the numerator of (A.24) have zero expectation, ̂̃θGLS is asymptotically
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unbiased when N →∞. We note that the numerator of (A.24) divided by
√
NT becomes

1

NT

N∑
i=1


x̃′i 0

0 x̃i1T

0 x′i
0 y′i,−1


(

ω̃−1 −σ−20 σ2τ1′T C̃−1

−σ−20 C̃−1σ2τ1T C̃−1

)(
wi + 1

1−ρηi +
∑∞

j=0 ρ
jui,−j

w∗i 1T + ui

)

=
1

NT

N∑
i=1


x̃′i 0

0 x̃i1T

0 x′i
0 y′i,−1


(

ω̃−1 −σ−20 σ2τ1′T C̃−1

−σ−20 C̃−1σ2τ1T C̃−1

)(
vi0

vi

)
. (A.25)

Since E (xituit) = 0 and E (xitw
∗
i ) = 0, whether E (xitηi) = 0 or not, then the expectation of

(A.25) is zero as long as N is large, i.e., (A.24) is asymptotically unbiased.

For the conditional QMLE (4.11), we have
δ̂Ĉ̃
b
∗
C

γ̂

−

δC

b̃∗C
γ

 =

 N∑
i=1


Z′i

x̃i1
′
T

yi01
′
T

V∗−1
(
Z′i, 1T x̃′i, 1T yi0

)
−1  N∑

i=1


Z′i

x̃i1
′
T

yi01
′
T

V∗−1v∗i

 .
(A.26)

By construction of v∗i in (4.9), we have that

E
(
Z′iv

∗
i

)
= 0,

E
(
x̃′iv
∗
i

)
= 0,

E (yi0v
∗
i ) = 0,

as a result, the numerator of (4.11) divided by
√
NT will have expectation zero as long as

N →∞, i.e.„the conditional QMLE (4.11) asymptotically unbiased as long as N →∞.

A.7 Derivation of Lemma 4.3

The derivation is the same as before, here we only sketch of the derivation. From (4.15), we

have(
δ̂
∗
C

γ̂∗C

)
−
(
δ∗C

γ∗C

)
=

[
N∑
i=1

(
Z′i
yi01

′
T

)
Ṽ∗−1 (Zi, 1T yi0)

]−1 [ N∑
i=1

(
Z′i
yi01

′
T

)
Ṽ∗−1ṽ∗i

]
. (A.27)

We note that

E (yi0v
∗
i0) = E

yi0
µ+ β

∞∑
j=0

ρjxi,−j +

∞∑
j=0

ρjui,−j

 6= 0,
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so is E (xitṽ
∗
i ) 6= 0 if xit is not independently distributed over t. Therefore, when T is fixed and

N →∞,

plimN→∞
1

NT

N∑
i=1

Z′iṼ
∗−1ṽ∗i =

1

1 + Tσ2w̃
plimN→∞

1

N

N∑
i=1

v∗i0
1

T

T∑
t=1

zit

= O

(
1

T

)
, (A.28)

and

plimN→∞
1

NT

N∑
i=1

yi01
′
T Ṽ∗−1ṽ∗i =

1

1 + Tσ2w̃
plimN→∞

1

N

N∑
i=1

v∗i0yi0

= O

(
1

T

)
. (A.29)

In other words, when T is fixed and N →∞, δ̂∗C is inconsistent.
When (N,T )→∞,

1√
NT

N∑
i=1

Z′iṼ
∗−1ṽ∗i =

√
N

T

T

1 + Tσ2w̃

1

N

N∑
i=1

v∗i0
1

T

T∑
t=1

zit = Op

(√
N

T

)
, (A.30)

and

1√
NT

1

NT

N∑
i=1

yi01
′
T Ṽ∗−1ṽ∗i =

√
N

T

T

1 + Tσ2w̃

1

N

N∑
i=1

v∗i0yi0 = Op

(√
N

T

)
. (A.31)

If T → ∞, δ̂∗C is consistent. However, if NT → a 6= 0 < ∞ as T → ∞, δ̂∗C is asymptotically
biased of order

√
N
T .

A.8 Derivation of Lemma 5.1

First, let’s consider the GLS estimator (5.1). For this result, following the previous derivation

for the homoscedastic errors, we have

√
NT

(
ρ̂heter,f − ρ

)
=

(
1

NT

N∑
i=1

y′i,−1V
−1
i yi,−1

)−1(
1√
NT

N∑
i=1

y′i,−1V
−1
i (ηi1T + ui)

)
.

(A.32)
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It follows from the previous derivation of Lemma 2.1 that

1√
NT

N∑
i=1

σ−2ui y′i,−1V
−1
i 1T ηi =

1√
NT

N∑
i=1

σ−2ui
1 + Tκi

y′i,−11T ηi

=
1− ρT
1− ρ

1√
NT

N∑
i=1

σ−2ui
1 + Tκi

yi0ηi

+
(T − 1)− ρ1−ρ

T−1

1−ρ
1− ρ σ2η

1√
NT

N∑
i=1

σ−2ui
1 + Tκi

=
1− ρT
1− ρ

1√
NT

N∑
i=1

σ−2ui
1 + Tκi

yi0ηi

+
(T − 1)− ρ1−ρ

T−1

1−ρ
1− ρ

1√
NT

N∑
i=1

κi
1 + Tκi

, (A.33)

where the last equation holds by using the definition of κi =
σ2η
σ2ui
, and

1√
NT

N∑
i=1

y′i,−1V
−1
i ui

=
1√
NT

N∑
i=1

T∑
t=1

σ−2ui yi,t−1uit −
1√
NT

N∑
i=1

σ−2ui κi
1 + Tκi

y′i,−11T 1′Tui

=
1√
NT

N∑
i=1

T∑
t=1

σ−2ui yi,t−1uit −
(T − 1)− ρ1−ρ

T−1

1−ρ
1− ρ

1√
NT

N∑
i=1

σ2ui
σ−2ui κi

1 + Tκi

=
1√
NT

N∑
i=1

T∑
t=1

σ−2ui yi,t−1uit −
(T − 1)− ρ1−ρ

T−1

1−ρ
1− ρ

1√
NT

N∑
i=1

κi
1 + Tκi

. (A.34)

It is obvious that the second term of (A.33) cancels out with the second term of (A.34),

thus

√
NT

(
ρ̂heter,f − ρ

)
=

(
1

NT

N∑
i=1

y′i,−1V
−1
i yi,−1

)−1

×
(

1√
NT

N∑
i=1

T∑
t=1

σ−2ui yi,t−1uit +
1− ρT
1− ρ

√
N

T 3
1

N

N∑
i=1

Tσ−2ui
1 + Tκi

yi0ηi

)
.(A.35)

Consequently, the first term of the numerator of (A.35) converges to a normal distribution

under fairly general conditions as stated in derivation of Lemma 2.1. The second term of the

numerator of (A.35) is Op
(√

N
T 3

)
if plimN→∞

1
N

∑N
i=1

Tσ−2ui
1+Tκi yi0ηi converges to a fixed constant.
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Thus, if N and T are of similar order, N
T → a < ∞ as Bai (2013) has assumed, the GLS

estimator (5.1) is asymptotically unbiased. On the other hand, if N is much larger than T

such that N
T 3
→ c 6= 0, treating initial value yi0 as fixed constants yields an estimator that is

asymptotically biased of order
√
c.

Let’s now consider the asymptotic properties of the QMLE estimator (5.4). To begin with,

for the inverse of the variance-covariance matrix (5.3), by using the formula of the block matrix,

we have

V̆−1i =

(
ω−1i −σ−20i σ211′TC−1i

−σ−20i C−1i σ211T C−1i

)
, (A.36)

where

ωi = σ20i −
σ41σ

−2
ui T

1 + Tκi
, and Ci = σ2uiIT + σ̃2ηi1T 1′T , (A.37)

with σ̃2ηi = σ2η − σ41σ−20i , and

C−1i =
(
σ2uiIT + σ̃2ηi1T 1′T

)−1
= σ−2ui

(
IT −

κ̃i
1 + T κ̃i

1T 1′T

)
, (A.38)

with κ̃i =
σ̃2ηi
σ2ui
.

Following the previous derivation, it is obvious that

√
NT

(
ρ̂heter,r − ρ

)
=

(
1

NT

N∑
i=1

y′i,−1C
−1
i yi,−1

)−1

×
(

1√
NT

N∑
i=1

[
y′i,−1C

−1
i (ηi1T + ui)− (yi0 − µ)σ−20i σ

2
11
′
TC−1i yi,−1

])
.(A.39)

The first term of the numerator of (A.39) has

1√
NT

N∑
i=1

y′i,−1C
−1
i (ηi1T + ui) =

1√
NT

N∑
i=1

y′i,−1C
−1
i ηi1T +

1√
NT

N∑
i=1

y′i,−1C
−1
i ui, (A.40)

with

C−1i =
(
σ2uiIT + σ̃2ηi1T 1′T

)−1
= σ−2ui

(
IT −

κ̃i
1 + T κ̃i

1T 1′T

)
,

C−1i 1T =
σ−2ui

1 + T κ̃i
1T ,

where σ̃2ηi = σ2η − σ41σ−20i and κ̃i =
σ̃2ηi
σ2ui
.
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The expectation of the first term of (A.40) is

E
(
y′i,−1C

−1
i ηi1T

)
=

σ−2ui
1 + T κ̃i

E
(
y′i,−11T ηi

)
=

σ−2ui
1 + T κ̃i

E

(
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)

=
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1 + T κ̃i
E

(
yi0ηi +

T−1∑
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yitηi

)
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1 + T κ̃i
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(
ρtE (yi0ηi) + E
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η2i
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1− ρT
1− ρ σ

2
1 +

σ2η
1− ρ

(
T − 1− ρ− ρT

1− ρ

))
, (A.41)

by using the iteration yit in (A.2) and

E
(
y′i,−1C

−1
i ui

)
= σ−2ui

[
E
(
y′i,−1ui

)
− κ̃i

1 + T κ̃i
E
(
y′i,−11T 1′Tui

)]
= − σ−2ui κ̃i
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E
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T∑
t=1

uit
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(
T−1∑
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E (yituit) +

T−1∑
s>t

E (yisuit)

)

= − κ̃i
1 + T κ̃i

(
(T − 1) +

1

1− ρρ (T − 2)− ρ2 − ρT

(1− ρ)2

)
. (A.42)

The expectation of the second term of (A.40), we have

1

NT

N∑
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E
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(yi0 − µ)σ−20i σ

2
11
′
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]
=

1

NT
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2
1
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E
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=

1
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]
(A.43)

since

E
(
vi01

′
Tyi,−1

)
= E

(
T∑
t=1

yi,t−1vi0

)
= E (yi0vi0) +

T−1∑
t=1

E (yitvi0)

=
σ21

1− ρ

(
T − 1− ρ− ρT

1− ρ

)
+

1− ρT
1− ρ σ

2
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Substituting the above results (A.41)-(A.43) into (A.40) yields

E
[
y′i,−1C

−1
i (ηi1T + ui)

]
− E

[
(yi0 − µ)σ−20i σ

2
11
′
TC−1i yi,−1

]
= 0,

since

σ2ui (1− ρ) (1 + T κ̃i)
{
E
[
y′i,−1C

−1
i (ηi1T + ui)

]
− E

[
(yi0 − µ)σ−20i σ

2
11
′
TC−1i yi,−1

]}
=

(
1− ρT

)
σ21 + σ2η

(
T − 1− ρ− ρT

1− ρ

)
− σ2η

(
T − 1− ρ− ρT

1− ρ

)
+σ41σ

−2
0i

(
T − 1− ρ− ρT

1− ρ

)
− σ−20i σ

4
1

(
T − 1− ρ− ρT

1− ρ

)
−
(
1− ρT

)
σ21

= 0.

Thus, the QMLE of γ (5.4) treating initial value as a random variable is asymptotically unbiased

as long as N →∞.
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A.9 Additional simulation results

This section contains the additional simulation results for DGP1-3 when ρ = 0.2 and 0.8.

Table A1: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.2 for DGP1 (6.1) and Case 1

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.2260 0.2019 0.1832 0.2241 0.2005 0.1904 0.2228 0.1994 0.1958

10 bias 0.0260 0.0019 -0.0168 0.0241 0.0005 -0.0096 0.0228 -0.0006 -0.0042

rmse 0.0482 0.0371 0.0534 0.0370 0.0260 0.0377 0.0291 0.0168 0.0235

size 9.1% 4.6% 6.6% 14.1% 4.9% 5.5% 24.7% 4.5% 5%

estim 0.2001 0.1999 0.1879 0.2000 0.1998 0.1937 0.2000 0.1999 0.1973

100 bias 0.0001 -0.0001 -0.0121 0.0000 -0.0002 -0.0063 0.0000 -0.0001 -0.0027

rmse 0.0099 0.0099 0.0158 0.0070 0.0070 0.0096 0.0046 0.0046 0.0055

size 4.1% 4.1% 23.8% 5.6% 5.8% 13.8% 5% 5.2% 8.6%

estim 0.1999 0.1999 0.1937 0.1998 0.1997 0.1937 0.1999 0.1998 0.1974

200 bias -0.0001 -0.0001 -0.0063 -0.0002 -0.0003 -0.0063 -0.0001 -0.0002 -0.0026

rmse 0.0070 0.0070 0.0094 0.0049 0.0049 0.0080 0.0032 0.0032 0.0042

size 4.5% 4.5% 14.4% 5.4% 5.4% 24.1% 5% 5.1% 12.7%
Note: size is calculated for H0 : ρ = 0.2. See note 1 of Table 1.

Table A2: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.8 for DGP1 (6.1) and Case 1

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.9799 0.7970 0.6819 0.9801 0.7977 0.7313 0.9799 0.7958 0.7680

10 bias 0.1799 -0.0030 -0.1181 0.1801 -0.0023 -0.0687 0.1799 -0.0042 -0.0320

rmse 0.1799 0.0475 0.1529 0.1801 0.0334 0.1012 0.1799 0.0213 0.0579

size 100% 4% 21.1% 100% 5.5% 14.6% 100% 5% 10%

estim 0.8009 0.7997 0.7790 0.8008 0.7996 0.7880 0.8011 0.7999 0.7948

100 bias 0.0009 -0.0003 -0.0210 0.0008 -0.0004 -0.0120 0.0011 -0.0001 -0.0052

rmse 0.0067 0.0067 0.0223 0.0048 0.0049 0.0132 0.0033 0.0031 0.0064

size 5.3% 5.5% 80% 5.7% 4.9% 55.6% 6.6% 4.8% 30.4%

estim 0.7999 0.7996 0.7896 0.8002 0.7999 0.7902 0.8002 0.7999 0.7957

200 bias -0.0001 -0.0004 -0.0104 0.0002 -0.0001 -0.0098 0.0002 -0.0001 -0.0043

rmse 0.0044 0.0045 0.0114 0.0032 0.0033 0.0104 0.0020 0.0021 0.0049

size 4.8% 4.8% 62.1% 4.8% 4.3% 80.2% 4.5% 4.5% 49.1%
Note: size is calculated for H0 : ρ = 0.8. See note 1 of Table 1.
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Table A3: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.2 for DGP1 (6.1) and Case 2

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.2240 0.2003 0.1788 0.2220 0.1985 0.1856 0.2222 0.1987 0.1936

10 bias 0.0240 0.0003 -0.0112 0.0220 -0.0015 -0.0144 0.0222 -0.0013 -0.0064

rmse 0.0505 0.0408 0.0580 0.0304 0.0282 0.0418 0.0297 0.0183 0.0267

size 8.3% 5.3% 6.1% 10.4% 5.4% 7.1% 20.5% 5.3% 5.5%

estim 0.2001 0.1999 0.1877 0.1999 0.1999 0.1928 0.2002 0.2001 0.1970

100 bias 0.0001 -0.0001 -0.0123 -0.0001 -0.0001 -0.0072 0.0002 0.0001 -0.0030

rmse 0.0109 0.0109 0.0168 0.0079 0.0079 0.0109 0.0049 0.0049 0.0059

size 5.1% 5.1% 18.6% 5.1% 5.1% 13.6% 5.2% 5% 8.7%

estim 0.1998 0.1997 0.1936 0.1999 0.1999 0.1939 0.1997 0.1997 0.1969

200 bias -0.0002 -0.0003 -0.0064 -0.0001 -0.0001 -0.0061 -0.0003 -0.00033 -0.0031

rmse 0.0076 0.0076 0.0100 0.0055 0.0055 0.0083 0.0033 0.0033 0.0046

size 5.3% 5.3% 13% 4.9% 4.9% 18.6% 4.6% 4.7% 14.7%
Note: size is calculated for H0 : ρ = 0.2. See note 1 of Table 1.

Table A4: Sample mean, bias, RMSE and size of ρ̂ when ρ = 0.8 for DGP1 (6.1) and Case 2

N 100 200 500

T nGLS GLS GMM nGLS GLS GMM nGLS GLS GMM

estim 0.9802 0.7962 0.6662 0.9803 0.7970 0.7149 0.9803 0.7971 0.7618

10 bias 0.1802 -0.0038 -0.1338 0.1803 -0.0030 -0.0851 0.1803 -0.0029 -0.0382

rmse 0.1802 0.0512 0.1698 0.1803 0.0361 0.1157 0.1804 0.0239 0.0637

size 100% 4.4% 22.2% 100% 5.7% 19.1% 100% 4.7% 11.3%

estim 0.8013 0.8002 0.7792 0.8011 0.7999 0.7871 0.8012 0.8001 0.7941

100 bias 0.0013 0.0002 -0.0208 0.0011 -0.0001 -0.0129 0.0012 0.0001 -0.0059

rmse 0.0072 0.0070 0.0223 0.0054 0.0052 0.0143 0.0035 0.0034 0.0071

size 4.9% 4.2% 71.7% 4.3% 4.7% 55.1% 6.9% 3.8% 31.8%

estim 0.8000 0.7997 0.7897 0.8002 0.7999 0.7902 0.8001 0.7998 0.7951

200 bias 0.0000 -0.0003 -0.0103 0.0002 -0.0001 -0.0098 0.0001 -0.0002 -0.0049

rmse 0.0048 0.0048 0.0114 0.0036 0.0036 0.0105 0.0022 0.0022 0.0055

size 4.8% 5.2% 53.5% 5.2% 5.5% 73.3% 5.2% 5.2% 55.1%
Note: size is calculated for H0 : ρ = 0.8. See note 1 of Table 1.
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