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Abstract

We examine the relationship between traffic congestion and emergency response times by match-
ing traffic data at a fine spatial and temporal scale to incident report data from fire departments
in California. Our results show that traffic slows down fire trucks arriving at the scene of an
emergency and increases the average monetary damages from fires. Allocating more funding to
fire departments decreases response times, but not the marginal effect of traffic. We document
an additional externality of traffic congestion and highlight the negative effect of traffic on one
of the many public goods that rely on well-functioning road infrastructure.

JEL Classification: R28, D03, J12
Keywords : Traffic, Public Goods, Externalities, Emergency Response Times

∗Beland: Department of Economics, Louisiana State University, lbeland@lsu.edu. Brent: Department of Eco-
nomics, Louisiana State University, dbrent@lsu.edu. We would like to thank David M. Marron, the Fire Program
Specialist at the Department of Homeland Security, for assistance in acquiring the fire data. We would also like to
thank Lt. Jonathan Baxter from the San Francisco Fire Department and Debbie Aguirre, Planning Division Chief
for the Los Angeles County Fire department for answering our questions.

1



1 Introduction

According to the National Emergency Number Association, over 240 million 911 calls are

placed every year in the United-States.1 Rapidly responding to emergency calls requires

both an efficient network of first responders and dispatchers as well as an effective road

infrastructure system. The literature shows that response times are critical for a number of

health outcomes including hospitalization, rehabilitation and survival following an accident,

stroke or heart attack (Wilde, 2013; Emberson et al., 2014; Jena et al., 2017). Police response

times have also been shown to affect crime clearance rates (Blanes i Vidal and Kirchmaier

(2015)). Although first responders are typically expeditious, one factor beyond their control

that affects response times is traffic. This is a particularly pressing concern giving increasing

trends of urbanization that have led to commensurate increases in traffic congestion.

In this paper, we examine the relationship between traffic and emergency response times

by fire departments. In addition to responding to fires, we also have data on fire departments

providing emergency medical services (EMS) and responding to other non-fire emergencies.

We match traffic data at a fine spatial and temporal scale to incident report data from

fire departments. The fire data consist of over 2.7 million incidents from 2008-2015 across

California collected by the National Fire Incident Reporting System (NFIRS). The traffic

data, collected from the California Department of Transportation, consists of roughly 21

billion observations from 25,000 stations at a five-minute interval resolution. The fine scale

traffic data allows us to merge traffic conditions immediately preceding the emergency event

by zip code, date, and the time of day. We assign zip code level traffic conditions for every

call to the fire department immediately prior to the fire department receiving the alarm.

Our identifying assumption is that traffic in a given zip code, in a given month, on a given

day of the week, within a given hour is uncorrelated with unobservables affecting emergency

response times. This is plausibly exogenous since we use the traffic before the fire/accident

occurs. Our final dataset, consists of 1.3 million incidents merged with zip code level traffic

conditions.

We make three main contributions to the literature. First, we investigate a new external-

1For more details, see https://www.nena.org/?page=911Statistics
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ity of traffic by showing how traffic congestion affects an important public good, the ability of

first responders to arrive on scene of emergencies. Second, we show how a variety of policies

affect both response times and the marginal effect of traffic on response times. Third, we

estimate the economic damage imposed by slower response times due to traffic congestion.

The results improve the understanding of the societal costs of traffic as well as the challenges

facing first responders.

Our results show that traffic slows down fire trucks arriving at the scene of an emergency.

This applies both for fire departments responding to fires and providing emergency medical

services. Increasing the response time of first responders represents a newly documented

externality to traffic, in additions to lost time, pollution, house prices, health, happiness

and crime (e.g. Kahneman et al. (2004); Currie and Walker (2011); Knittel et al. (2016);

Ossokina and Verweij (2015); Anderson et al. (2016) and Beland and Brent (2018)). The

effects are highly nonlinear; increases in response time are primarily due to traffic in the

right tail of the traffic distribution. We find suggestive evidence that fire departments in

high traffic times and during peak congestion periods are able to adapt to high traffic, and

that unexpected traffic has a larger effect on response times.

Additionally, we investigate road congestion policies (high-occupancy vehicle lanes (HOV),

toll roads, public transportation), as well as municipal expenditures that can mitigate this

problem. Allocating more money to fire departments decreases response times but does not

reduce the marginal effect of traffic on response times. None of the other policies have any

effect on response times, and only spending on public transit mitigates the impact of traffic

on response times. Lastly we show that traffic congestion increases the monetary damages

of fires.

In aggregate, the increased monetary damages from fires and emergency medical services

due to traffic are approximately $130-$360 million per year in California. These costs do

not account for increased response times for ambulances or police, and therefore should be

considered a lower bound for the costs of traffic on emergency response services. Additionally,

we do not capture adapting expenditures by fire departments to cope with traffic congestion.

Our results are robust to multiple specifications and robustness tests including metro-by-

date fixed effects, different definitions of our traffic variable, and relaxing the temporal
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assumptions for assigning traffic to an emergency. The results are consistent across each of

the major metropolitan areas in California.

Our results highlight the importance of well-functioning road infrastructure in the efficient

provision of a public good. Since rapid response by first responders is critical, simply using

the value of time and reliability and health effects from pollution will underestimate the

costs of traffic congestion. As urbanization shifts higher shares of the population to cities,

it is important to understand the value of a well functioning road network.

The rest of the paper is organized as follows: Section 2 discusses the related literature;

Section 3 provides a description of the data and presents descriptive statistics; Section 4

presents the empirical strategy; Section 5 is devoted to the main results, heterogeneity of the

impacts and a series of robustness checks; and Section 6 concludes with policy implications.

2 Related literature

Our paper is related to the literature on externalities associated with traffic congestion,

the importance of emergency response times, and road congestion policies. This article

first fits into a broad literature investigating negative externalities to traffic. One of the

largest externalities is the value of time and fuel expenditures associated with congestion,

which is estimated to cost U.S. commuters $121 billion in 2011 (Schrank et al. (2012)).

The literature has also quantified several other externalities of traffic, including pollution,

health and housing prices. Currie and Walker (2011) show that traffic reductions due to the

introduction of electronic toll collection, (E-ZPass) reduce vehicle emissions near highway toll

plazas, which subsequently reduces prematurity and low birth weight among mothers near

a toll plaza. Pollution from traffic also negatively affects children’s contemporaneous health

(Knittel et al., 2016) and has a long run effect on mortality within the elderly population

(Anderson, 2015). Ossokina and Verweij (2015) exploit a quasi-experiment that reduces

traffic congestion on certain streets in the Netherlands and find that the decrease in traffic

leads to an increase in housing prices. While the primary costs of traffic are mostly due

to lost time and reliability, there is research using survey data linking traffic to negative

mental health outcomes, including stress and aggression (Parkinson, 2001; Hennessy and
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Wiesenthal, 1999; Gee and Takeuchi, 2004; Gottholmseder et al., 2009; Roberts et al., 2011;

Künn-Nelen, 2016; Anderson et al., 2016). Moreover, Beland and Brent (2018) find that

extreme traffic events lead to an increase in domestic violence in Los Angeles. There are

several papers that investigate the role of traffic congestion in private decisions related to

driving behavior (Burger and Kaffine, 2009; Couture et al., Forthcoming).

This paper is also related to the literature on the importance of emergency response

times. There are several medical papers that examine the effect of response times on health

outcomes. The general consensus is that slower response times increase mortality for cardiac

arrest, but not for general trauma (Larsen et al., 1993; Pell et al., 2001; Newgard et al., 2010).

However, recent papers show that the lack of an association between response times and

general trauma mortality may be due to endogeneity: first responders devote more resources

(e.g. faster response times) to more severe trauma events that have higher mortality rates.

Wilde (2013) uses distance from the hospital as an instrument to investigate the impact

of response time on mortality and hospital utilization. The instrumental variable approach

shows that increased emergency response times significantly increase mortality and the like-

lihood of being admitted to the hospital, while the OLS approach finds no effect. Jena et al.

(2017) exploits marathons as a natural experiment that increases response times to investi-

gate the effect on cardiac arrest outcomes. They find that patients who were admitted to

marathon-affected hospitals with acute myocardial infarction or cardiac arrest on marathon

dates had longer ambulance transport times before noon (4.4 minutes longer) and higher

30-day mortality than patients who were hospitalized on other days. The effect of response

times is not limited to medical outcomes, as Blanes i Vidal and Kirchmaier (2015) show that

police response times affect crime clearance rates. They find suggestive evidence in support

of two mechanisms: an increase in response time increases the likelihood of an immediate

arrest and the likelihood that a suspect will be named by a victim or witness. We contribute

to the literature by highlighting how traffic is an important input to emergency response

times for fire departments using data at a fine spatial and temporal scale.

Our paper is also related to the literature on road congestion policies that aim to reduce

traffic externalities. According to Duranton and Turner (2011), building new capacity is

unlikely to reduce congestion in the long-run since the elasticity of travel demand with
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respect to capacity is roughly equal to one. Other research analyze policies such as dynamic

tolling (De Borger and Proost, 2013; Gross and Brent, 2018), road pricing (Gibson and

Carnovale, 2015), HOV and HOT lanes (Konishi and Mun, 2010; Bento et al., 2014, 2013) and

public transportation (Anderson, 2014; Adler and van Ommeren, 2016; Bauernschuster et

al., 2017; Gendron-Carrier et al., 2018). This literature finds that these policies affect driving

behaviors, decrease travel time, reduce congestion, and curtail pollution. We contribute by

investigating if theses policies affect the work of first responders.

In sum, we contribute to these literatures in several ways. We first contribute by showing

that traffic is an important issue for emergency response times by fire departments. This con-

stitutes an additional externality to traffic and highlights the interaction of two public goods:

emergency response services and road infrastructure. We also contribute by investigating

policies (HOV lanes, toll roads, public transportation, and spending) that can potentially

decrease response time and mitigate the negative impact of traffic on first responders.

3 Data & Descriptive statistics

3.1 Data sources, Dataset creations & descriptive statistics

The fire department incident data are collated from fire departments by the National Fire

Incident Reporting System (NFIRS). NFIRS represents a uniform reporting standard for

fire departments and emergency medical services (EMS), and represents the world’s largest

national database on fire incident reporting. The Federal Emergency Management Agency

(FEMA) administers the NFIRS database. This database contains roughly 40 million in-

cidents nationwide from 2008-2015. We focus on California due to the availability of high

resolution traffic data; there are approximately 2.7 million incidents from 2008-2015 in Cal-

ifornia. There are eleven modules that contain detailed data on different elements of fire

incidents. We use the basic module that includes data on the time the alarm was raised

and the time the fire department arrived on scene at the emergency. We focus on three

types of calls: fire, emergency medical service, and other hazards. We exclude other types

of incidents that do not require rapid arrival on the scene such as being locked out of a

residence or animal control. Fire departments also report the dollar value of property and
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contents damaged due to the fire. We exclude all incidents coded as wildfires because these

incidents likely have different dynamics for response times and monetary damages relative

to most fires occurring in urban areas.

The traffic data are obtained from the California Department of Transportation through

the Caltrans Performance Measurement System (PeMS).2 We access annual Station 5-minute

datasets from 2008 to 2015 for approximately 25,000 monitoring stations over California.

There are over 840,000 five minute intervals for each of the 25,000 stations representing

approximately 21 billion observations of traffic data. Since the fire incident data are geocoded

at the zip code level, we aggregate the traffic data to the zip code level. For each five minute

interval within each zip code, we generate the average deviations from free-flow speeds (traffic

from midnight to 3 am) weighted by station occupancy. Our traffic delay variable is therefore

the occupancy-weighted average deviation from free-flow speeds in miles per hour (mph) in

a five minute interval across all monitoring stations in a given zip code. The average delay

across all times and zip codes is 4.7 mph, 6.8 mph during the morning commute, and 10 mph

during the evening commute. In the regressions, we standardize the average delay variables

to have mean zero and standard deviation one.

Monitoring stations only exist in a subset of zip codes so our final traffic dataset is

comprised of a balanced panel of 725 zip codes by 840,000 five-minute intervals over eight

years, leading to a balanced panel of almost 50 million observations. The monitoring stations

are primarily on major roads in urban areas, although some non-urban areas are included.

While the sample is not necessarily representative in this respect, we do capture the urban

areas where traffic is most likely to be a major challenge for fire departments. Figure 1

presents a map of the study location and the roads considered.3

In order to merge the traffic data to the fire incident data, we assign the most recent

five-minute traffic data prior to the alarm being raised. This ensures that the incident did

not cause the traffic. We have the exact minute that the alarm was raised, but five-minute

2The data can be accessed via http://pems.dot.ca.gov/ A free account needs to be established.
3We contacted the fire departments to find out if traffic represented a challenge and whether they used the

roads contained in the PemS data. Both the Los Angeles and San Francisco fire departments responded that traffic
represented a challenge, that they use freeways, and that spillover traffic from freeways impacted response times.
These correspondence are available upon request.
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intervals for the traffic data. Therefore, the traffic interval will begin 6-10 minutes prior to

the alarm being raised.4 We also explore other temporal assignments of traffic including up

to 60 minutes of traffic and a 10 minute buffer prior to the alarm time. Additionally, we

generate traffic delays using other specifications of traffic such as the deviations in terms of

travel times and not weighting by station occupancy.

We merge several additional data sets in order to investigate potential policies to mitigate

the negative impact of traffic on first responders response time. In order to assess the

effect of transportation policies, we use geocoded locations of high-occupancy vehicle lanes

(HOV), high-occupancy toll lanes (HOT), and rail stations from the California Department

of Transportation. We also incorporate data on annual municipal expenditure on a variety

of categories obtained from the California State Controller.5 From the Controller data, we

generate variables for total per capita municipal expenditure as well as per capita expenditure

on fire departments, EMS, police, roads, and public transport. In order to ensure that the

spending occurs prior to the fire incidents, we merge expenditures from the most recent

year prior to the incident. Lastly, we also use the 2010-2014 American Community Survey

(ACS) from the Census Bureau to obtain aggregate zip code level characteristics to analyze

heterogeneity by demographics. The final dataset contains 1.3 million observations of fire

incidents merged with traffic conditions.6

Figure 2 shows a histogram of the time it takes for the fire department to arrive on the

scene after they receive the alarm (in minutes). The vertical line shows that the average

response time is slightly below 8 minutes, and after removing very high outliers the average

response time is 6.5 minutes. Figure 3 displays the average deviation in MPH across all zip

codes by time of day. Consistent with most urban areas, Figure 3 shows notable peak traffic

in the morning and afternoon.

Traffic in California is a severe issue in several major cites. For example, Los Angeles is a

candidate for the worst traffic in the United-States and in the world; six of the country’s 10

most congested stretches of highway are in the Los Angeles metropolitan area. Drivers in Los

4For example, if the alarm was raised between 1:31-1:35 we will use traffic from 1:25-1:30.
5The data are available online at https://bythenumbers.sco.ca.gov/.
6We remove outliers that may skew the results by dropping incidents with response time exceeding the 99.75th

percentile, which is 45 minutes.
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Angeles spent 102 hours battling traffic congestion during peak hours in 2017.7 According

to Sorensen (2009), congestion is due to the high population density and the fact that

parking is cheap and abundant. San Francisco is also among the top ten of worse cities for

traffic conditions in the United-States and ranks third behind Los Angeles and New York.

The typical driver in the San Francisco area faces an average of 79 hours of congestion.

The situation is also problematic in other cities in California such as San Diego (48 hours of

congestion and ranked 13th worse cities in the U.S.) and Sacramento (25 hours of congestion).

We replicate Figure 3 for each major metropolitan area as well as zip codes not in a major

metro area in Figure 4. The Bay Area (which includes San Francisco, Oakland, Berkeley,

and San Jose) and Los Angeles have the worse traffic followed by San Diego and Sacramento.

Zip codes outside of major metro areas (Other) do not experience severe delays.

4 Methodology

To quantify the impact of traffic on response time and damages, we estimate the following

equation:

Yit = β0 + β1LagDelayit−1 + βZ + βMY + βD + βH + τ + τ 2 + εit (1)

where Yit is the outcome of interest in zip code i on day t. Our main outcomes of interest

are responses time (in minutes) and the natural log of the dollar value of damages from fires.

Response time is the time elapsed from when the alarm is sounded until the fire department

arrived on the scene in minutes. All zero values and high outliers above the 99.75th percentile

(45 minutes) are dropped. Loss (or damage) is the natural log of the monetary value of

damaged property and contents from a fire. LagDelayit−1 is the standardized deviation from

free-flow in miles per hours during the five minutes immediately preceding the fire alarm.

We use zip code level fixed effects (βZ) to control for static spatial unobserved effects. To

control for time-varying unobservables, we include year-by-month (βMY ), day-of-week (βD),

and hour of day (βH) fixed effects. Our identifying assumption is that the lagged deviations

from average traffic in a given zip code, in a given month, on a given day of the week, at

7See the INRIX Traffic Scoreboard, available at: http://inrix.com/scorecard/.
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a given hour is uncorrelated with response times except through the mechanism of traffic.

We posit that traffic congestion is plausibly exogenous because we use the traffic before the

fire/incident occurs. Robust standard errors are clustered at the zip code level. To better

understand the relationship between traffic and response time, we investigate heterogeneous

impact along several dimensions: time of day, individual cities and zip code characteristics

including average traffic. We also look at several alternative traffic specifications, including

different traffic conditions before the alarm is received and alternative definition of traffic

delays. Finally, we analyze policies that can potentially mitigate the results and investigate

how these policies affect response time and damages from fires.

5 Results

5.1 Main Results

Table 1 presents the primary results of the impact of traffic on response time. The dependent

variable is the number of minutes it takes for the fire department to arrive on the scene

after they receive the alarm. Column (1) presents results for all observations (fires, all

emergency medical services (EMS), and all emergency calls) and shows that traffic leads to a

significant increase in response time. Columns (2) and (3) present results for fires and EMS

calls, respectively and show that traffic increases response times for fires and EMS calls.

The sample for the regression presented in column (4) represents all incidents where rapid

response times are critical and is our primary specification for all future regressions except

where noted. Column (4) presents results for all emergency calls which include fires, EMS

calls, and incidents where the fire department is dispatched to address incidents involving

overpressure rupture, explosion, overheating or hazardous conditions without fires. Once

again, traffic significantly increase response time.

Since the Lag Delay is standardized, the interpretation of the coefficient is the change in

response times (in minutes) for a one standard deviation increase in traffic congestion. A one

standard deviation increase in traffic delay (≈ 8 mph) is roughly equivalent to the average

delay during the morning peak congestion period. Our preferred specification in column (4)

shows that the increase in response time is 0.055 minutes, equating to a roughly 1% increase
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in response times.8

5.2 Heterogeneous Effects

We examine heterogeneous impacts for different times of day, locations, and traffic conditions.

As shown in Figure 3, traffic congestion varies significantly over the course of the day, so we

run regressions for the different times of the day. Table 2 reports regression results for the

effect of traffic on response times during Peak, Off-Peak, AM Peak and PM Peak periods.

Peak refers to alarms initiated in the peak morning (6:00-7:59 AM) and evening (4:00-6:59

PM) commutes, while Off-Peak refers to all other times. Column (1) and (2) focus on alarms

initiated in Peak and Off-Peak hours, respectively. Columns (3) and (4) focus exclusively on

morning and evening peak periods. Traffic increases response times during all times of the

day with the largest effects in the Off-Peak and morning peak periods.

To examine whether zip codes with different traffic profiles experience different marginal

effects, we also run regressions for different subsets of the sample based on zip code level

traffic conditions. Table 3 reports regression results that divide the sample by zip codes’ mean

and standard deviation of traffic. Columns (1) and (2) present regressions that restrict the

sample to zip codes with average delays above and below the sample median, respectively.

Column (3) and (4) present regressions that restrict the sample to zip codes with standard

deviation of delays above and below the sample median. Table 3 shows that in all four

samples, traffic significantly increases response time, and the effect is significantly more

pronounced in low traffic zip codes and low standard deviation zip codes. This suggest

habituation and adaptation by first responders in high traffic and high standard variation

zip codes that allow them to better cope with traffic congestion.9

We next explore the role of expected vs unexpected traffic. In Table 4, we estimate moving

average models to predict traffic and then use both the predicted value and the residual

as regressors, which we refer to as Expected and Unexpected, respectively. The moving

average regressions include all fixed effects as our base specification along with recent traffic.

8While the average effect is small there are incidents that face traffic speeds that deviate from free flow by more
than 15 MPH, and we investigate the heterogeneity of the effect below. We also present below the impact of traffic
on damages and find an economically significant impact of traffic on damages.

9It should be noted that most zip codes with high traffic also have a high standard deviation of traffic.
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The columns show different specifications for predicting our primary independent variable:

zip code level traffic prior to a fire alarm. Columns (1) and (2) present moving average

models using the traffic observations for the most recent week and month, respectively, using

the traffic during the exact same hour of the day. Columns (3) and (4) present a similar

specification for traffic in the last week or month but expand the temporal period used to

predict traffic to all hours during the same peak period (AM, PM, or Off-Peak).10 Table 4

shows that there is an impact for both predicted and unpredicted traffic when the prediction

is sufficiently accurate. As the prediction becomes less accurate, unexpected traffic becomes

more important.11

Next, we investigate heterogeneity in response time across metropolitan areas in Table

5. Column (1) presents the results for the Los Angeles (LA) metro area, column (2) for

the Bay Area (SF), column (3) for the San Diego (SD) metro area, column (4) for the

Sacramento (SAC) metro area, and column (5) for all observations not within one of the

four aforementioned metro areas.12 Table 5 shows that traffic causes an increase in response

time in Los Angeles, San Francisco, San Diego and Sacramento but not in the non-urban

locations (the coefficient is positive but not significant). This indicates that, unsurprisingly,

traffic only slows down fire departments in highly urbanized areas. Another interesting

finding is that the effect is remarkably consistent across metro areas, ranging from 0.051 to

0.066 minutes for a one standard deviation increase in delays.

Table 6 investigates the response time by zip code characteristics. Columns (1) and (2)

present the results for high and low income areas, respectively. Columns (3) and (4) present

results for high non-white areas and low non-white areas, respectively. High income refers to

zip codes above the sample median for median household income and high non-white refer to

zip codes that are above the sample median for the percentage of people that are not white.

Column (5) presents the base impact and interaction terms for high income and low-non

10First Stage shows the coefficient on the moving average variable in the first stage regression - a perfect prediction
will have a value of one. Both the residuals and predicted values are standardized.

11One reason why we show multiple specifications of the moving average model is that we do not know how
accurately fire departments can predict traffic. If fire departments make accurate traffic predictions, then they will
know when traffic causes increased response times.

12We use general metropolitan areas as opposed to municipal boundaries. This means that all metro areas include
multiple fire departments.

12



white areas. Table 6 shows that traffic increase significantly the response time in all areas

and the difference between areas are not statistically significant.

Next, we examine nonlinearities in traffic congestion. This is similar to examining peak

traffic congestion and high traffic zip codes, but we also include time series variation in traffic

condition. This specifications more precisely identifies incidents where the fire department

faces very severe traffic. We specify the regression using decile indicators variables for lagged

traffic delay, where the fifth decile is omitted to avoid perfect multicollinearity.13 Therefore,

the coefficients can be interpreted as the change in response times relative to the median

traffic within a certain decile. Figure 5 plots the coefficients and 95% confidence intervals for

traffic decile indicators and shows that the impact on response times is concentrated in the

three highest deciles (8-10). Traffic below the median does improve response times.14 Traffic

in the 10th decile increases response times by 3%. This is consistent with other research that

finds that traffic variability and right tail events, in addition to average congestion, generate

significant costs (Beland and Brent, 2018; Gross and Brent, 2018).

Figure 6 presents regression results for the decile indicators after separating the sample

into High and Low traffic areas. The High Traffic and Low Traffic regressions limit the

sample to zip codes with average delays above and below the median average delay. Figure

6 shows similar results to Figure 5, and the effect of traffic on response time is higher in

zip codes with low traffic. This is consistent with the explanation that unexpected traffic

leads to larger increases in response times. Fire departments in high traffic areas may expect

extreme traffic events and invest in resources to cope with those events. Figure 7 shows the

regression results for decile indicators sample after isolating the sample, and generating the

deciles, for each metropolitan area. Once again, in all four major metropolitan areas, traffic

in the right tail generates most of the increase in response times and non-urban areas do not

experience any significant effects.

13The regression includes zip code, year-by-month, day-of-week, and hour-of-day fixed effects.
14Figure A.1 plots the coefficient for indicators variables for deciles of traffic congestion within each zip code.

Results are qualitatively the same as Figure 5
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5.3 Robustness

In order to test whether alternative confounding effects are driving the results, we investigate

the robustness of the results to different levels of fixed effects, clustering, and specifications

of the traffic variable. Our first set of robustness results, presented in Table 7 shows a variety

of different sets of fixed effects and clusters for the standard errors. Column (1) replicates the

base effect, column (2) replaces year-by-month fixed effects with date fixed effects, column

(3) replaces year-by-month fixed effects with metro-by-year-by-month fixed effects, column

(4) uses metro-by-date fixed effects, and column (5) interacts all fixed effects (year-by-month,

hour-of-day, and day-of-week) with metro fixed effects. Columns (6) and (7) replicate the

specification in column (5) but employ two way clustering for zip code and year-by-month

and zip code and hour-of-day, respectively. Table 7 shows that the results are robust to all

the alternative specifications and the coefficients are very similar across all columns.

There are more zip codes than fire departments so we prefer using zip code fixed effects in

our main specifications. However, some zip codes are served by more than one fire department

and there may be unobserved fire department specific effects. Therefore, we also replicate

these specifications using both zip code and fire department fixed effects as well as including

fire departments as an additional cluster in the standard errors. The results are essentially

unchanged and are reported in Table A.1 in the Appendix.

Our primary traffic congestion variable is the deviation from free flow in terms of speed

(in mph). As described in section 3, we also generate deviations from zip code free-flow

travel times. This variable is specified as the standardized deviation from free flow travel

times in the five minutes preceding the alarm by free-flow travel times. Table 8 replicates

Table 7 using travel time deviations instead of speed deviations. Table 8 shows once again

that traffic increases response times in all the different specifications, and the magnitudes

are very similar.

Lastly, we investigate different temporal specifications of the traffic variable. Our primary

specification uses traffic in the previous five minutes using a five minutes lag from when the

alarm was raised. Table 9 presents different traffic specifications to estimate the impact

of traffic on response time. The first five columns use a five minute lag before the alarm
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but expand the historical window of traffic used to generate the congestion variable. The

last three columns use a ten minute lag before the alarm was raised and various times to

generate the traffic conditions.15 In all specifications, the results are similar. Table 9 shows

that traffic increases response times by first responders and that the results are robust to

different ways of calculating traffic congestion.

5.4 Policy Investigation

In order to understand how municipalities are coping with the effect of traffic on first re-

sponders, we investigate potential road congestion policies (HOV lanes, toll roads, public

transportation, and spending) that could potentially mitigate the negative impact of traffic

on response time. In order to explore how carpool lanes, tolling, and rail public transport

mitigate the effect of traffic on response times, we create indicator variables for zip codes that

have HOV lanes and toll roads and interact those variables with traffic. Table 10 presents

the results of these regressions. Column (1) presents the impact of HOV lanes, column (2)

studies the impact of toll lanes, and columns (3) and (4) present the impact of the zip code

being served by the rail system and metro stations, respectively.16 Column (5) interacts all

four policies with traffic. Table 10 shows than none of the interaction terms for those policies

are statistically significant and the main effect of traffic on response time is again statisti-

cally significant and similar to Table 1. In sum, these policies do not appear to decrease the

negative impact of traffic on response times. These policies may decrease congestion, but

they do not mitigate the marginal effect of congestion on response times.

Table 11 presents the impact of lagged city expenditure on response time.17 We consider

the following expenditure categories: total, road, transit, fire department and EMS spend-

ing. We include both the base effect and the interaction of spending with traffic. Spending

variables are defined as hundreds of dollars per capita. Table 11 shows that spending an ad-

ditional $100 per person per year on fire departments reduces response times by 1.5 minutes,

15If an alarm was raised at 11:50 the base specification (5 min with 5 min lag) uses traffic from 11:40-11:45). The
30 min with 5 min lag will use traffic from 11:15-11:45, and the 30 min with 10 min lag uses traffic from 11:10-11:40.

16Metro stations are a subset of rail stations that focus on local transportation. By contrast, rail stations also
include longer distance (inter-city) rail lines.

17Unlike our broad definition for metropolitan area, city expenditure is defined at the municipal level and there
are multiple municipalities in each metro area. Therefore, the expenditure data has a finer spatial resolution than
the four broad cities.
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and the result is statistically significant. This is a large increase in spending as the average

municipality spends only $167 per person per year, so $100 represents a 60% increase in

spending. Examining the interaction effects shows that spending on fire departments does

not decrease the effect of traffic on response times, although spending on public transit

does.18

In order to assess the economic impact of traffic congestion on increased response times,

we analyze the effect of traffic on damages from fires. Table 12 presents the regression results

of traffic on damages where the dependent variable is the natural log of the dollar value of

damages. These regressions only utilize fires as opposed to other emergencies.19 The first

three columns use the full sample while the last three remove high damages outliers, defined

as fires generating over $1 million of damage. Column (1) presents our base specifications,

column (2) present the impact by quintiles and column (3) presents our base specification

with additional controls for spending category.20 Column (1) shows that a one standard

deviation in delays increases damages by roughly 3%. Column (2) shows that the negative

impact of delays on damages is concentrated among the 5th quintile of delays (larger de-

lays). Incorporating spending data in Column (3) shows that spending on transit and fire

department has negative and significant impact on the monetary impact of damages. Col-

umn (4)-(6) replicates column (1)-(3) but remove high damages outliers and the results are

qualitatively the same.

Estimates for Aggregate Costs

From the damage estimates, we generate back of the envelope calculations for the aggregate

economic effect of traffic on emergency response services. First, we examine the effect of

traffic on the the dollar value of damages from fires. This does not include any injuries or

deaths, nor does it include the effect of reduced response times on other types of emergencies.

A one standard deviation increase in traffic, roughly equivalent to the average traffic con-

18Total spending increases response times, but that may be representing a demand or population effect. Total
spending increases the marginal effect of traffic, though the effect is very small.

19These regressions drop all observations where the damage was zero but the value of property is missing. These
observations may represent fires where the reporting department did not fully complete the damage section of the
form.

20We use quintiles instead of deciles due to the smaller sample size in the fire regressions. The third quintile is
omitted so the interpretation of the dummies is the effect relative to median traffic.
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gestion during peak periods, generates an additional $12 million dollar in fire damages per

year.21 Extrapolating to all fires in California, including fires not in our dataset, generates

damages of roughly $33 million of increased fire damages per year.22

In order to assess the costs from non-fire emergencies, we also evaluate the impact of

increased response times due to traffic on EMS mortality rates. Wilde (2013) estimates that

a one minute increase in EMS response times leads to a 1% increase in 90-day mortality

rates. Using the 1% marginal mortality effect combined with our estimates of traffic on

response times shows that a one standard deviation increase in traffic is responsible for an

additional 23 deaths per year, assuming a base mortality rate of 6% found in Wilde (2013).

Extrapolating to all EMS services provided by fire departments in California generates 64

additional annual deaths due to a one standard deviation increase in traffic. Using the U.S.

Department of Transportation’s Value of a Statistical Life of $9.6 million, a one standard

deviation increase in traffic leads to $220-$614 million of damages due to increased mortality

from EMS services.23 If we combine the fire and EMS costs and scale them by average traffic

(average traffic is 56% of the standard deviation of traffic) the current annual damages from

average traffic due to slower emergency response times in California is roughly $130-$360

million dollars. These are clearly rough approximations that require significant extrapolation

and should primarily used to provide the general range of economic damages due to traffic

slowing down first responders. These damages do not account for costs associated with police

or paramedics when fire departments are not on the scene, although they are likely to face

increased response times due to traffic congestion.

6 Conclusion

This paper examines the relationship between traffic and emergency response times. We

match traffic data at a fine spatial and temporal scale to incident report data from fire

21This is calculated by multiplying the marginal effect of damages (3% times the mean damage, which is $35,879)
by the number of fires per year and scaling the effect by average traffic.

22The extrapolation uses all fires with damages in the NFIRS data and scales divides by 0.75 to account that only
75% of fire incidents are reported to NFIRS. Similar to our regressions, these estimates exclude all wildfires.

23Documentation of revised value of statistical life estimates for the Department of Transportation are
provided at: https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20a%

20Statistical%20Life%20Guidance.pdf. This is consistent with the upper range estimated by Kniesner et al. (2012).

17

https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20a%20Statistical%20Life%20Guidance.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20a%20Statistical%20Life%20Guidance.pdf


departments, using fire department data collected by the NFIRS and traffic data from the

California Department of Transportation for 2008 to 2015. Our results show that traffic

delays fire trucks arriving at the scene of fires, EMS, and other emergencies. Traffic also

increases the average monetary damage from a fire. Our results document an additional

externality of traffic congestion and highlight the importance of a well-functioning road

network. We then investigate potential common congestion policies that might mitigate this

problem. HOV lanes, toll roads, public transportation, and spending do not decrease the

marginal effect of traffic on response times. Allocating more money to the fire departments

decreases response times but does not mitigates the negative effect of traffic. Spending on

public transit is the only expenditure that mitigates the effect of traffic on response times,

but the marginal effect of one dollar per person is small.

In aggregate, the increased monetary damages from fires and emergency medical services

due to traffic is approximately $130-$360 million per year in California. These costs do not

account for increased response times for ambulances or police, and therefore should be con-

sidered a lower bound for the costs of traffic on emergency response services. The results

document an additional benefit for reducing traffic and also highlight the benefit of increased

spending on fire department. We do not account for costs of adaptive investments that fire

departments undertake to cope with traffic congestion. New stations or trucks might need

to be purchased in order to maintain adequate response times, further increasing the costs of

traffic congestion on first responders. Lastly, the results highlight the importance of under-

standing linkages between public goods. A fire department relies on well functioning roads

to perform their duties, and many other public goods that rely on alternative public goods.

Understanding these linkages is important for properly allocating scarce public resources.
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Figure 1: Study Location

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user community,  Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA,
USGS, AeroGRID, IGN, and the GIS User Community

Notes: The figure plots the study location.
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Figure 2: Response Time

Notes: The figure plots the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time) on the horizontal axis. Data are from the NFIRS
from 2008-2014.
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Figure 3: Traffic Delay by Time of Day

Notes: The figure plots the delay in miles per hour (MPH) by time of day. Data are from the
California Department of Transportation Performance Measurement System (PeMS) from 2008-
2014.
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Figure 4: Traffic Delay by Time of Day Across Metro Areas

Notes: The figure plots the delay by time of day for each core based statistical area (CBSA). Data
are from the California Department of Transportation Performance Measurement System (PeMS).
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Figure 5: Effect of Deciles of Traffic on Response Time

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from a
regression where the dependent variable is response time (in minutes). The fifth decile is omitted to
prevent perfect multicollinearity. The regression includes zip code, year-by-month, day-of-week, and
hour-of-day fixed effects. The 95% error bars are generated from robust standard errors clustered
at the zip code level.
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Figure 6: Effect of Deciles of Traffic on Response Time by Traffic Conditions

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from
regressions where the dependent variable is response time (in minutes). The results are from two
regressions, the High Traffic and Low Traffic regressions limit the sample to zip codes with average
delays above and below the median average delay. The fifth decile is omitted to prevent perfect
multicollinearity. The regressions includes zip code, year-by-month, day-of-week, and hour-of-day
fixed effects. The 95% error bars are generated from robust standard errors clustered at the zip
code level.

28



Figure 7: Effect of Deciles of Traffic on Response Time by Metro Area

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion from
regressions where the dependent variable is response time (in minutes). The results are from
separate regressions for each core based statistical area (CBSA), and the deciles are calculated
within each CBSA. Other refers to all zip codes not in one of the major CBSAs listed. The fifth
decile is omitted to prevent perfect multicollinearity. The regressions includes zip code, year-by-
month, day-of-week, and hour-of-day fixed effects. The 95% error bars are generated from robust
standard errors clustered at the zip code level.
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Table 1: The Effect of Traffic on Response Time
(1) (2) (3) (4)

All Observations Fires EMS Emergency Calls

Lag Delay 0.0569∗∗∗ 0.0274∗∗ 0.0511∗∗∗ 0.0553∗∗∗

(0.00659) (0.0125) (0.00638) (0.00662)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,227,827 239,835 668,746 1,044,356
Zip Codes 721 709 608 719

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow
in miles per hour. The columns denote subsets of the data for incidents representing fires, all emergency medical
services (EMS), and all emergency calls. Emergency calls includes fires, EMS calls as well as incidents where the fire
department is dispatched to address incidents involving overpressure rupture, explosion, overheating or hazardous
conditions without fires. Robust standard errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table 2: Heterogeneity in Traffic on Response Time by Time of Day
(1) (2) (3) (4)

Peak Off-Peak AM Peak PM Peak

Lag Delay 0.0416∗∗∗ 0.0748∗∗∗ 0.0739∗∗∗ 0.0320∗∗∗

(0.00747) (0.0101) (0.0134) (0.00825)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 344,053 700,280 100,981 243,049
Zip Codes 696 713 651 691

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow in
miles per hour. The columns examine different subsets of the sample by time of day. Peak focuses on alarms initiated
in the peak congestion (6:00-7:59AM and 4:00-6:59PM), while Off-Peak is all other times The AM and PM Peak
columns restrict the sample to morning (6:00-7:59AM) and evening (4:00-6:59PM) respectively. Robust standard
errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Heterogeneity in Traffic on Response Time by Traffic Conditions
(1) (2) (3) (4)

High Traffic Low Traffic High Std. Dev. Low Std. Dev.

Lag Delay 0.0328∗∗∗ 0.0936∗∗∗ 0.0352∗∗∗ 0.109∗∗∗

(0.00668) (0.0161) (0.00638) (0.0177)

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 529,230 515,126 535,806 508,550
Zip Codes 381 338 384 335

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow in
miles per hour. The columns examine different subsets based on zip code level traffic conditions. The High and Low
Traffic columns restrict the sample to zip codes with average delays above and below the sample median. The High
and Low Std. Dev. columns restrict the sample to zip codes with standard deviation of delays above and below the
sample median. Robust standard errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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Table 4: Heterogeneity in Traffic on Response Time by Traffic Expectations
Hour Peak

(1) (2) (3) (4)
Week Month Weak Month

Expected 0.0350∗∗∗ 0.0374∗∗∗ 0.00971 0.0137∗

(0.00931) (0.0104) (0.00774) (0.00764)
Unexpected 0.0371∗∗∗ 0.0368∗∗∗ 0.0446∗∗∗ 0.0424∗∗∗

(0.00421) (0.00413) (0.00467) (0.00467)

First Stage .78 .84 .67 .52

Zip Code FEs Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes
Observations 1,017,957 1,015,428 1,018,343 1,016,980
Zip Codes 719 716 719 718

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Residual and Prediction refer to the residuals and predicted values from
a moving average regression with all fixed effects and recent delays. The columns show different specifications for
the month average; either the previous week or month and using the same our or same peak period (AM, PM or
Off-Peak). First Stage shows the coefficient on the moving average variable in the first stage regression - a perfect
prediction will have a value of one. Both the residuals and predicted values are standardized. Robust standard errors
clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Heterogeneity in Traffic on Response Time: Different Metro Areas
(1) (2) (3) (4) (5)
LA SF SD SAC Other

Lag Delay 0.0527∗∗∗ 0.0509∗∗∗ 0.0526∗∗∗ 0.0662∗∗ 0.0186
(0.0115) (0.00834) (0.0136) (0.0280) (0.0331)

Metro LA SF SD SAC Other
Zip Code FEs Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes
Observations 355,963 203,146 174,353 127,180 183,714
Zip Codes 312 148 64 62 133

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow
in miles per hour. The columns show regressions for each metro area separately. Other contains all zip codes not
in one of the four major cities shown. Robust standard errors clustered at the zip code level are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Heterogeneity in Traffic on Response Time by Demographics
(1) (2) (3) (4) (5)

Hi Income Low Income High Non-White Low Non-White Interactions

Lag Delay 0.0612∗∗∗ 0.0498∗∗∗ 0.0401∗∗∗ 0.0661∗∗∗ 0.0550∗∗∗

(0.00843) (0.0106) (0.00807) (0.0106) (0.0143)
Lag Delay*Hi Income -0.00388

(0.0129)
Lag Delay*Hi Non-White 0.00436

(0.0129)

Zip Code FEs Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes
Observations 538,193 506,163 526,152 518,204 1,044,356
Zip Codes 428 291 357 362 719

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow
in miles per hour. The columns examine different subsets based on zip code level demographics. The High and Low
Income/Non-White columns restrict the sample to zip codes with above and below the sample medians. Column
(5) interacts traffic delays with indicators for above the sample median income and proportion non-white. Robust
standard errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 7: Robustness to Different Specifications
(1) (2) (3) (4) (5) (6) (7)

Base Date Metro*YM Metro*Date Metro*All Metro*All Metro*All

Lag Delay 0.0553∗∗∗ 0.0497∗∗∗ 0.0520∗∗∗ 0.0465∗∗∗ 0.0506∗∗∗ 0.0506∗∗∗ 0.0506∗∗∗

(0.00662) (0.00647) (0.00654) (0.00632) (0.00649) (0.00761) (0.00743)

Zip Code FEs Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes No No No No No No
Day-of-week FEs Yes Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes Yes No No No
Date FEs No Yes No No No No No
Metro*Date FEs No No No Yes No No No
Metro*Year*Month FEs No No Yes No Yes Yes Yes
Metro*Day-of-week FEs No No No No Yes Yes Yes
Metro*Hour-of-day No No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,044,356 1,044,350 1,044,356 1,044,247 1,044,356 1,044,356 1,044,356
Zip Codes 719 719 719 719 719 96 24

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free
flow in miles per hour. The columns examine different levels of fixed effects and two way clustering of the standard
errors. Robust standard errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table 8: Robustness to Different Specifications - Travel Times
(1) (2) (3) (4) (5) (6) (7)

Base Date Metro*YM Metro*Date Metro*All Metro*All Metro*All

Travel Times 0.0421∗∗∗ 0.0398∗∗∗ 0.0397∗∗∗ 0.0376∗∗∗ 0.0404∗∗∗ 0.0404∗∗∗ 0.0404∗∗∗

(0.00608) (0.00598) (0.00598) (0.00575) (0.00564) (0.00560) (0.00623)

Zip Code FEs Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes No No No No No No
Day-of-week FEs Yes Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes Yes No No No
Date FEs No Yes No No No No No
Metro*Date FEs No No No Yes No No No
Metro*Year*Month FEs No No Yes No Yes Yes Yes
Metro*Day-of-week FEs No No No No Yes Yes Yes
Metro*Hour-of-day No No No No Yes Yes Yes
SE Cluster Zip Zip Zip Zip Zip Zip & Month Zip & Hour
Observations 1,019,389 1,019,383 1,019,389 1,019,283 1,019,389 1,019,389 1,019,389
Zip Codes 716 716 716 716 716 96 24

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Travel Times is the percentage increase in zip code level travel times prior to
the alarm. The columns examine different levels of fixed effects and two way clustering of the standard errors. Robust
standard errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table 9: Robustness to Different Traffic Variables
5min Lag 10min Lag

(1) (2) (3) (4) (5) (6) (7) (8)
5min 10min 20min 30min 60min 5min 30min 60min

Lag Delay 0.0553∗∗∗ 0.0550∗∗∗ 0.0545∗∗∗ 0.0537∗∗∗ 0.0526∗∗∗ 0.0526∗∗∗ 0.0526∗∗∗

(0.00662) (0.00666) (0.00684) (0.00694) (0.00690) (0.00690) (0.00690)

Zip Code FEs Yes Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,044,356 1,044,361 1,050,924 1,044,376 1,044,405 1,041,840 1,041,840 1,041,840
Zip Codes 719 719 737 719 719 719 719 719

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow
in miles per hour. The columns examine different ways to create the traffic conditions prior to the alarm. Robust
standard errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table 10: Interactions with Tolling and Public Transport
(1) (2) (3) (4) (5)

HOV Toll Rail Metro All

Lag Delay 0.00657∗∗∗ 0.00712∗∗∗ 0.00706∗∗∗ 0.00672∗∗∗ 0.00695∗∗∗

(0.00113) (0.000900) (0.00103) (0.000939) (0.00139)
Lag Delay*HOV 0.000843 0.000515

(0.00153) (0.00166)
Lag Delay*Toll -0.000570 -0.00112

(0.00192) (0.00207)
Lag Delay*Rail -0.000297 -0.00188

(0.00153) (0.00215)
Lag Delay*Metro 0.00123 0.00296

(0.00177) (0.00248)
Zip Codes FEs Yes Yes Yes Yes Yes
Month-Year FEs Yes Yes Yes Yes Yes
Day of Week FEs Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes

Observations 1,044,362 1,044,362 1,044,362 1,044,362 956,655
Zip Codes 725 725 725 725 614

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after
they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow in
miles per hour. The columns interact traffic delays with various indicator variables that affect transportation. HOV
is equal to one if the zip code as high occupancy vehicle lanes, Toll is equal to one if the zip code has toll roads, Rail
is equal to one if there are rail stations in the zip code, and Metro is equal to one if there is a municipal metro station
in the zip code. Robust standard errors clustered at the level described in the bottom panel are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Interactions with Lagged Municipal Expenditures

(1) (2)
Base Interaction

Lag Delay 0.00701∗∗∗ 0.00489∗∗∗

(0.000843) (0.00171)
Total SpendingT−1 0.221∗∗∗ 0.209∗∗∗

(0.0474) (0.0474)
Road SpendingT−1 -0.0656 -0.0453

(0.175) (0.182)
Transit SpendingT−1 -0.196 -0.108

(0.358) (0.362)
Fire SpendingT−1 -1.521∗∗∗ -1.493∗∗

(0.580) (0.588)
EMS SpendingT−1 -0.692 -0.655

(1.746) (1.811)
Lag Delay*TotalT−1 0.00180∗∗∗

(0.000672)
Lag Delay*RoadT−1 -0.00357

(0.00459)
Lag Delay*TransitT−1 -0.0122∗∗

(0.00490)
Lag Delay*FireT−1 -0.00428

(0.00901)
Lag Delay*EMST−1 -0.00750

(0.0224)
Zip Codes FEs Yes Yes
Month-Year FEs Yes Yes
Day of Week FEs Yes Yes
Hour-of-day FEs Yes Yes

Observations 953,637 953,637
Zip Codes 614 614

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene
after they receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from
free flow in miles per hour. The regressions include city level per-capita spending on various municipal expenses in
the previous year in hundreds of dollars. Column (2) includes spending and the interactions of spending with traffic
delays. Robust standard errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 12: The Effect of Traffic on Damages
Full Sample Remove High Damage Outliers

(1) (2) (3) (4) (5) (6)
Base Quintiles Spending Base Quintiles Spending

Lag Delay 0.0295∗∗ 0.0251∗ 0.0301∗∗ 0.0272∗

(0.0147) (0.0148) (0.0147) (0.0165)
Lag Delay Q1 0.0499 0.0420

(0.0317) (0.0316)
Lag Delay Q2 -0.0169 -0.0129

(0.0309) (0.0309)
Lag Delay Q4 0.0105 0.0134

(0.0296) (0.0292)
Lag Delay Q5 0.0778∗∗ 0.0782∗∗

(0.0383) (0.0379)
Total SpendingT−1 0.00484 -0.000112

(0.00376) (0.00289)
Road SpendingT−1 -0.0171 -0.0270

(0.0212) (0.0228)
Transit SpendingT−1 -0.306∗∗∗ -0.296∗∗∗

(0.0471) (0.0491)
Fire SpendingT−1 -0.127∗∗ -0.0726∗∗

(0.0513) (0.0353)
EMS SpendingT−1 -0.0969 -0.0472

(0.131) (0.0944)

Zip Code FEs Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes Yes Yes Yes Yes Yes
Day-of-week FEs Yes Yes Yes Yes Yes Yes
Hour-of-day FEs Yes Yes Yes Yes Yes Yes
Observations 81,040 83,705 72,549 80,734 83,392 72,286
Zip Codes 635 654 614 635 654 645

Notes: The dependent variable is the natural log of the dollar value of damages from a fire. Lag Delay is the
standardized (µ = 0 and σ = 1) deviation from free flow in miles per hour. Lag Delay Q1-Q5 are dummy variables
for quintiles of traffic congestion, with the third quintile omitted. The regressions in columns (3) and (4) include city
level per-capita spending on various municipal expenses in the previous year in hundreds of dollars. Robust standard
errors clustered at the zip code level are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix

Table A.1: Robustness to Different Specifications with Fire Department Fixed Effects
(1) (2) (3) (4) (5) (6) (7)

Base Date Metro*YM Metro*Date Metro*All Metro*All Metro*All

Lag Delay 0.0557∗∗∗ 0.0505∗∗∗ 0.0533∗∗∗ 0.0476∗∗∗ 0.0506∗∗∗ 0.0506∗∗∗ 0.0506∗∗∗

(0.00770) (0.00770) (0.00719) (0.00706) (0.00745) (0.00820) (0.00807)

Zip Code & FD FEs Yes Yes Yes Yes Yes Yes Yes
Year*Month FEs Yes No No No No No No
Day-of-week FEs Yes Yes Yes Yes No No No
Hour-of-day FEs Yes Yes Yes Yes No No No
Date FEs No Yes No No No No No
Metro*Date FEs No No No Yes No No No
Metro*Year*Month FEs No No Yes No Yes Yes Yes
Metro*Day-of-week FEs No No No No Yes Yes Yes
Metro*Hour-of-day No No No No Yes Yes Yes
SE Cluster Zip & FD Zip & FD Zip & FD Zip & FD Zip & FD Zip & FD & Month Zip & FD & Hour
Observations 1,022,980 1,022,974 1,022,980 1,022,872 1,022,980 1,022,980 1,022,980
Zip Codes 400 400 400 400 400 96 24

Notes: The dependent variable is the number of minutes it takes for the fire department to arrive on the scene after they
receive the alarm (Response Time). Lag Delay is the standardized (µ = 0 and σ = 1) deviation from free flow in miles per
hour. The columns examine different levels of fixed effects and two way clustering of the standard errors. Robust standard
errors clustered at the level described in the bottom panel are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A.1: Effect of Zip Code Deciles of Traffic on Response Time

Notes: The figure plots the coefficient for indicators variables for deciles of traffic congestion within each
zip code from a regression where the dependent variable is response time (in minutes). The fifth decile is
omitted to prevent perfect multicollinearity. The regression includes zip code, year-by-month, day-of-week,
and hour-of-day fixed effects. The 95% error bars are generated from robust standard errors clustered at
the zip code level.
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